|
|
|
|
|
import streamlit as st |
|
from streamlit_float import * |
|
from streamlit_antd_components import * |
|
import pandas as pd |
|
import logging |
|
import io |
|
import matplotlib.pyplot as plt |
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
from .discourse_process import perform_discourse_analysis |
|
from .discourse_interface import display_discourse_results |
|
from ..utils.widget_utils import generate_unique_key |
|
from ..database.discourse_mongo_db import store_student_discourse_result |
|
from ..database.chat_mongo_db import store_chat_history, get_chat_history |
|
|
|
|
|
|
|
def fig_to_bytes(fig): |
|
"""Convierte una figura de matplotlib a bytes.""" |
|
try: |
|
buf = io.BytesIO() |
|
fig.savefig(buf, format='png', dpi=300, bbox_inches='tight') |
|
buf.seek(0) |
|
return buf.getvalue() |
|
except Exception as e: |
|
logger.error(f"Error en fig_to_bytes: {str(e)}") |
|
return None |
|
|
|
|
|
def display_discourse_live_interface(lang_code, nlp_models, discourse_t): |
|
""" |
|
Interfaz para el análisis del discurso en vivo con layout mejorado |
|
""" |
|
try: |
|
if 'discourse_live_state' not in st.session_state: |
|
st.session_state.discourse_live_state = { |
|
'analysis_count': 0, |
|
'current_text1': '', |
|
'current_text2': '', |
|
'last_result': None, |
|
'text_changed': False |
|
} |
|
|
|
|
|
st.subheader(discourse_t.get('enter_text', 'Ingrese sus textos')) |
|
|
|
|
|
text_col1, text_col2 = st.columns(2) |
|
|
|
|
|
with text_col1: |
|
st.markdown("**Texto 1 (Patrón)**") |
|
text_input1 = st.text_area( |
|
"Texto 1", |
|
height=200, |
|
key="discourse_live_text1", |
|
value=st.session_state.discourse_live_state.get('current_text1', ''), |
|
label_visibility="collapsed" |
|
) |
|
st.session_state.discourse_live_state['current_text1'] = text_input1 |
|
|
|
|
|
with text_col2: |
|
st.markdown("**Texto 2 (Comparación)**") |
|
text_input2 = st.text_area( |
|
"Texto 2", |
|
height=200, |
|
key="discourse_live_text2", |
|
value=st.session_state.discourse_live_state.get('current_text2', ''), |
|
label_visibility="collapsed" |
|
) |
|
st.session_state.discourse_live_state['current_text2'] = text_input2 |
|
|
|
|
|
col1, col2, col3 = st.columns([1,2,1]) |
|
with col1: |
|
analyze_button = st.button( |
|
discourse_t.get('analyze_button', 'Analizar'), |
|
key="discourse_live_analyze", |
|
type="primary", |
|
icon="🔍", |
|
disabled=not (text_input1 and text_input2), |
|
use_container_width=True |
|
) |
|
|
|
|
|
if analyze_button and text_input1 and text_input2: |
|
try: |
|
with st.spinner(discourse_t.get('processing', 'Procesando...')): |
|
result = perform_discourse_analysis( |
|
text_input1, |
|
text_input2, |
|
nlp_models[lang_code], |
|
lang_code |
|
) |
|
|
|
if result['success']: |
|
|
|
for graph_key in ['graph1', 'graph2']: |
|
if graph_key in result and result[graph_key] is not None: |
|
bytes_key = f'{graph_key}_bytes' |
|
graph_bytes = fig_to_bytes(result[graph_key]) |
|
if graph_bytes: |
|
result[bytes_key] = graph_bytes |
|
plt.close(result[graph_key]) |
|
|
|
st.session_state.discourse_live_state['last_result'] = result |
|
st.session_state.discourse_live_state['analysis_count'] += 1 |
|
|
|
store_student_discourse_result( |
|
st.session_state.username, |
|
text_input1, |
|
text_input2, |
|
result |
|
) |
|
|
|
|
|
st.markdown("---") |
|
st.subheader(discourse_t.get('results_title', 'Resultados del Análisis')) |
|
display_discourse_results(result, lang_code, discourse_t) |
|
|
|
else: |
|
st.error(result.get('message', 'Error en el análisis')) |
|
|
|
except Exception as e: |
|
logger.error(f"Error en análisis: {str(e)}") |
|
st.error(discourse_t.get('error_processing', f'Error al procesar el texto: {str(e)}')) |
|
|
|
|
|
elif 'last_result' in st.session_state.discourse_live_state and \ |
|
st.session_state.discourse_live_state['last_result'] is not None: |
|
|
|
st.markdown("---") |
|
st.subheader(discourse_t.get('previous_results', 'Resultados del Análisis Anterior')) |
|
display_discourse_results( |
|
st.session_state.discourse_live_state['last_result'], |
|
lang_code, |
|
discourse_t |
|
) |
|
|
|
except Exception as e: |
|
logger.error(f"Error general en interfaz del discurso en vivo: {str(e)}") |
|
st.error(discourse_t.get('general_error', "Se produjo un error. Por favor, intente de nuevo.")) |
|
|
|
|
|
|
|
|