|
|
|
|
|
import streamlit as st |
|
import logging |
|
from ..utils.widget_utils import generate_unique_key |
|
import matplotlib.pyplot as plt |
|
import numpy as np |
|
|
|
from ..database.current_situation_mongo_db import store_current_situation_result |
|
|
|
from ..database.writing_progress_mongo_db import ( |
|
store_writing_baseline, |
|
store_writing_progress, |
|
get_writing_baseline, |
|
get_writing_progress, |
|
get_latest_writing_metrics |
|
) |
|
|
|
from .current_situation_analysis import ( |
|
analyze_text_dimensions, |
|
analyze_clarity, |
|
analyze_vocabulary_diversity, |
|
analyze_cohesion, |
|
analyze_structure, |
|
get_dependency_depths, |
|
normalize_score, |
|
generate_sentence_graphs, |
|
generate_word_connections, |
|
generate_connection_paths, |
|
create_vocabulary_network, |
|
create_syntax_complexity_graph, |
|
create_cohesion_heatmap |
|
) |
|
|
|
|
|
plt.rcParams['font.family'] = 'sans-serif' |
|
plt.rcParams['axes.grid'] = True |
|
plt.rcParams['axes.spines.top'] = False |
|
plt.rcParams['axes.spines.right'] = False |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
TEXT_TYPES = { |
|
'academic_article': { |
|
'name': 'Artículo Académico', |
|
'thresholds': { |
|
'vocabulary': {'min': 0.70, 'target': 0.85}, |
|
'structure': {'min': 0.75, 'target': 0.90}, |
|
'cohesion': {'min': 0.65, 'target': 0.80}, |
|
'clarity': {'min': 0.70, 'target': 0.85} |
|
} |
|
}, |
|
'student_essay': { |
|
'name': 'Trabajo Universitario', |
|
'thresholds': { |
|
'vocabulary': {'min': 0.60, 'target': 0.75}, |
|
'structure': {'min': 0.65, 'target': 0.80}, |
|
'cohesion': {'min': 0.55, 'target': 0.70}, |
|
'clarity': {'min': 0.60, 'target': 0.75} |
|
} |
|
}, |
|
'general_communication': { |
|
'name': 'Comunicación General', |
|
'thresholds': { |
|
'vocabulary': {'min': 0.50, 'target': 0.65}, |
|
'structure': {'min': 0.55, 'target': 0.70}, |
|
'cohesion': {'min': 0.45, 'target': 0.60}, |
|
'clarity': {'min': 0.50, 'target': 0.65} |
|
} |
|
} |
|
} |
|
|
|
|
|
ANALYSIS_DIMENSION_MAPPING = { |
|
'morphosyntactic': { |
|
'primary': ['vocabulary', 'clarity'], |
|
'secondary': ['structure'], |
|
'tools': ['arc_diagrams', 'word_repetition'] |
|
}, |
|
'semantic': { |
|
'primary': ['cohesion', 'structure'], |
|
'secondary': ['vocabulary'], |
|
'tools': ['concept_graphs', 'semantic_networks'] |
|
}, |
|
'discourse': { |
|
'primary': ['cohesion', 'structure'], |
|
'secondary': ['clarity'], |
|
'tools': ['comparative_analysis'] |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
def display_current_situation_interface(lang_code, nlp_models, t): |
|
""" |
|
TAB: |
|
- Expander con radio para tipo de texto |
|
Contenedor-1 con expanders: |
|
- Expander "Métricas de la línea base" |
|
- Expander "Métricas de la iteración" |
|
Contenedor-2 (2 columnas): |
|
- Col1: Texto base |
|
- Col2: Texto iteración |
|
Al final, Recomendaciones en un expander (una sola “fila”). |
|
""" |
|
|
|
|
|
if 'base_text' not in st.session_state: |
|
st.session_state.base_text = "" |
|
if 'iter_text' not in st.session_state: |
|
st.session_state.iter_text = "" |
|
if 'base_metrics' not in st.session_state: |
|
st.session_state.base_metrics = {} |
|
if 'iter_metrics' not in st.session_state: |
|
st.session_state.iter_metrics = {} |
|
if 'show_base' not in st.session_state: |
|
st.session_state.show_base = False |
|
if 'show_iter' not in st.session_state: |
|
st.session_state.show_iter = False |
|
|
|
|
|
tabs = st.tabs(["Análisis de Texto"]) |
|
with tabs[0]: |
|
|
|
with st.expander("Selecciona el tipo de texto", expanded=True): |
|
text_type = st.radio( |
|
"¿Qué tipo de texto quieres analizar?", |
|
options=list(TEXT_TYPES.keys()), |
|
format_func=lambda x: TEXT_TYPES[x]['name'], |
|
index=0 |
|
) |
|
st.session_state.current_text_type = text_type |
|
|
|
st.markdown("---") |
|
|
|
|
|
|
|
|
|
with st.container(): |
|
|
|
with st.expander("Métricas de la línea base", expanded=False): |
|
if st.session_state.show_base and st.session_state.base_metrics: |
|
|
|
display_metrics_in_one_row(st.session_state.base_metrics, text_type) |
|
else: |
|
|
|
display_empty_metrics_row() |
|
|
|
|
|
with st.expander("Métricas de la iteración", expanded=False): |
|
if st.session_state.show_iter and st.session_state.iter_metrics: |
|
display_metrics_in_one_row(st.session_state.iter_metrics, text_type) |
|
else: |
|
display_empty_metrics_row() |
|
|
|
st.markdown("---") |
|
|
|
|
|
|
|
|
|
with st.container(): |
|
col_left, col_right = st.columns(2) |
|
|
|
|
|
with col_left: |
|
st.markdown("**Texto base**") |
|
text_base = st.text_area( |
|
label="", |
|
value=st.session_state.base_text, |
|
key="text_base_area", |
|
placeholder="Pega aquí tu texto base", |
|
) |
|
if st.button("Analizar Base"): |
|
with st.spinner("Analizando texto base..."): |
|
doc = nlp_models[lang_code](text_base) |
|
metrics = analyze_text_dimensions(doc) |
|
|
|
st.session_state.base_text = text_base |
|
st.session_state.base_metrics = metrics |
|
st.session_state.show_base = True |
|
|
|
st.session_state.show_iter = False |
|
|
|
|
|
with col_right: |
|
st.markdown("**Texto de iteración**") |
|
text_iter = st.text_area( |
|
label="", |
|
value=st.session_state.iter_text, |
|
key="text_iter_area", |
|
placeholder="Edita y mejora tu texto...", |
|
disabled=not st.session_state.show_base |
|
) |
|
if st.button("Analizar Iteración", disabled=not st.session_state.show_base): |
|
with st.spinner("Analizando iteración..."): |
|
doc = nlp_models[lang_code](text_iter) |
|
metrics = analyze_text_dimensions(doc) |
|
|
|
st.session_state.iter_text = text_iter |
|
st.session_state.iter_metrics = metrics |
|
st.session_state.show_iter = True |
|
|
|
|
|
|
|
|
|
if st.session_state.show_iter: |
|
with st.expander("Recomendaciones", expanded=False): |
|
reco_list = [] |
|
for dimension, values in st.session_state.iter_metrics.items(): |
|
score = values['normalized_score'] |
|
target = TEXT_TYPES[text_type]['thresholds'][dimension]['target'] |
|
if score < target: |
|
|
|
suggestions = suggest_improvement_tools_list(dimension) |
|
reco_list.extend(suggestions) |
|
|
|
if reco_list: |
|
|
|
st.write(" | ".join(reco_list)) |
|
else: |
|
st.info("¡No hay recomendaciones! Todas las métricas superan la meta.") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def display_metrics_in_one_row(metrics, text_type): |
|
""" |
|
Muestra las cuatro dimensiones (Vocabulario, Estructura, Cohesión, Claridad) |
|
en una sola línea, usando 4 columnas con ancho uniforme. |
|
""" |
|
thresholds = TEXT_TYPES[text_type]['thresholds'] |
|
dimensions = ["vocabulary", "structure", "cohesion", "clarity"] |
|
|
|
col1, col2, col3, col4 = st.columns([1,1,1,1]) |
|
cols = [col1, col2, col3, col4] |
|
|
|
for dim, col in zip(dimensions, cols): |
|
score = metrics[dim]['normalized_score'] |
|
target = thresholds[dim]['target'] |
|
min_val = thresholds[dim]['min'] |
|
|
|
if score < min_val: |
|
status = "⚠️ Por mejorar" |
|
color = "inverse" |
|
elif score < target: |
|
status = "📈 Aceptable" |
|
color = "off" |
|
else: |
|
status = "✅ Óptimo" |
|
color = "normal" |
|
|
|
with col: |
|
col.metric( |
|
label=dim.capitalize(), |
|
value=f"{score:.2f}", |
|
delta=f"{status} (Meta: {target:.2f})", |
|
delta_color=color, |
|
border=True |
|
) |
|
|
|
|
|
|
|
|
|
|
|
def display_empty_metrics_row(): |
|
""" |
|
Muestra una fila de 4 columnas vacías (Vocabulario, Estructura, Cohesión, Claridad). |
|
Cada columna se dibuja con st.metric en blanco (“-”). |
|
""" |
|
empty_cols = st.columns([1,1,1,1]) |
|
labels = ["Vocabulario", "Estructura", "Cohesión", "Claridad"] |
|
|
|
for col, lbl in zip(empty_cols, labels): |
|
with col: |
|
col.metric( |
|
label=lbl, |
|
value="-", |
|
delta="", |
|
border=True |
|
) |
|
|
|
|
|
|
|
|
|
|
|
def display_metrics_analysis(metrics, text_type=None): |
|
""" |
|
Muestra los resultados del análisis: métricas verticalmente y gráfico radar. |
|
""" |
|
try: |
|
|
|
text_type = text_type or 'student_essay' |
|
|
|
|
|
thresholds = TEXT_TYPES[text_type]['thresholds'] |
|
|
|
|
|
metrics_col, graph_col = st.columns([1, 1.5]) |
|
|
|
|
|
with metrics_col: |
|
metrics_config = [ |
|
{ |
|
'label': "Vocabulario", |
|
'key': 'vocabulary', |
|
'value': metrics['vocabulary']['normalized_score'], |
|
'help': "Riqueza y variedad del vocabulario", |
|
'thresholds': thresholds['vocabulary'] |
|
}, |
|
{ |
|
'label': "Estructura", |
|
'key': 'structure', |
|
'value': metrics['structure']['normalized_score'], |
|
'help': "Organización y complejidad de oraciones", |
|
'thresholds': thresholds['structure'] |
|
}, |
|
{ |
|
'label': "Cohesión", |
|
'key': 'cohesion', |
|
'value': metrics['cohesion']['normalized_score'], |
|
'help': "Conexión y fluidez entre ideas", |
|
'thresholds': thresholds['cohesion'] |
|
}, |
|
{ |
|
'label': "Claridad", |
|
'key': 'clarity', |
|
'value': metrics['clarity']['normalized_score'], |
|
'help': "Facilidad de comprensión del texto", |
|
'thresholds': thresholds['clarity'] |
|
} |
|
] |
|
|
|
|
|
for metric in metrics_config: |
|
value = metric['value'] |
|
if value < metric['thresholds']['min']: |
|
status = "⚠️ Por mejorar" |
|
color = "inverse" |
|
elif value < metric['thresholds']['target']: |
|
status = "📈 Aceptable" |
|
color = "off" |
|
else: |
|
status = "✅ Óptimo" |
|
color = "normal" |
|
|
|
st.metric( |
|
metric['label'], |
|
f"{value:.2f}", |
|
f"{status} (Meta: {metric['thresholds']['target']:.2f})", |
|
delta_color=color, |
|
help=metric['help'] |
|
) |
|
st.markdown("<div style='margin-bottom: 0.5rem;'></div>", unsafe_allow_html=True) |
|
|
|
except Exception as e: |
|
logger.error(f"Error mostrando resultados: {str(e)}") |
|
st.error("Error al mostrar los resultados") |
|
|
|
def display_comparison_results(baseline_metrics, current_metrics): |
|
"""Muestra comparación entre línea base y métricas actuales""" |
|
|
|
|
|
metrics_col, graph_col = st.columns([1, 1.5]) |
|
|
|
with metrics_col: |
|
for dimension in ['vocabulary', 'structure', 'cohesion', 'clarity']: |
|
baseline = baseline_metrics[dimension]['normalized_score'] |
|
current = current_metrics[dimension]['normalized_score'] |
|
delta = current - baseline |
|
|
|
st.metric( |
|
dimension.title(), |
|
f"{current:.2f}", |
|
f"{delta:+.2f}", |
|
delta_color="normal" if delta >= 0 else "inverse" |
|
) |
|
|
|
|
|
if delta < 0: |
|
suggest_improvement_tools(dimension) |
|
|
|
with graph_col: |
|
display_radar_chart_comparison( |
|
baseline_metrics, |
|
current_metrics |
|
) |
|
|
|
def display_metrics_and_suggestions(metrics, text_type, title, show_suggestions=False): |
|
""" |
|
Muestra métricas y opcionalmente sugerencias de mejora. |
|
Args: |
|
metrics: Diccionario con las métricas analizadas |
|
text_type: Tipo de texto seleccionado |
|
title: Título para las métricas ("Base" o "Iteración") |
|
show_suggestions: Booleano para mostrar sugerencias |
|
""" |
|
try: |
|
thresholds = TEXT_TYPES[text_type]['thresholds'] |
|
|
|
st.markdown(f"### Métricas {title}") |
|
|
|
for dimension, values in metrics.items(): |
|
score = values['normalized_score'] |
|
target = thresholds[dimension]['target'] |
|
min_val = thresholds[dimension]['min'] |
|
|
|
|
|
if score < min_val: |
|
status = "⚠️ Por mejorar" |
|
color = "inverse" |
|
elif score < target: |
|
status = "📈 Aceptable" |
|
color = "off" |
|
else: |
|
status = "✅ Óptimo" |
|
color = "normal" |
|
|
|
|
|
st.metric( |
|
dimension.title(), |
|
f"{score:.2f}", |
|
f"{status} (Meta: {target:.2f})", |
|
delta_color=color, |
|
help=f"Meta: {target:.2f}, Mínimo: {min_val:.2f}" |
|
) |
|
|
|
|
|
if show_suggestions and score < target: |
|
suggest_improvement_tools(dimension) |
|
|
|
|
|
st.markdown("<div style='margin-bottom: 0.5rem;'></div>", unsafe_allow_html=True) |
|
|
|
except Exception as e: |
|
logger.error(f"Error mostrando métricas: {str(e)}") |
|
st.error("Error al mostrar métricas") |
|
|
|
def display_radar_chart(metrics_config, thresholds, baseline_metrics=None): |
|
""" |
|
Muestra el gráfico radar con los resultados. |
|
Args: |
|
metrics_config: Configuración actual de métricas |
|
thresholds: Umbrales para las métricas |
|
baseline_metrics: Métricas de línea base (opcional) |
|
""" |
|
try: |
|
|
|
categories = [m['label'] for m in metrics_config] |
|
values_current = [m['value'] for m in metrics_config] |
|
min_values = [m['thresholds']['min'] for m in metrics_config] |
|
target_values = [m['thresholds']['target'] for m in metrics_config] |
|
|
|
|
|
fig = plt.figure(figsize=(8, 8)) |
|
ax = fig.add_subplot(111, projection='polar') |
|
|
|
|
|
angles = [n / float(len(categories)) * 2 * np.pi for n in range(len(categories))] |
|
angles += angles[:1] |
|
values_current += values_current[:1] |
|
min_values += min_values[:1] |
|
target_values += target_values[:1] |
|
|
|
|
|
ax.set_xticks(angles[:-1]) |
|
ax.set_xticklabels(categories, fontsize=10) |
|
circle_ticks = np.arange(0, 1.1, 0.2) |
|
ax.set_yticks(circle_ticks) |
|
ax.set_yticklabels([f'{tick:.1f}' for tick in circle_ticks], fontsize=8) |
|
ax.set_ylim(0, 1) |
|
|
|
|
|
ax.plot(angles, min_values, '#e74c3c', linestyle='--', linewidth=1, |
|
label='Mínimo', alpha=0.5) |
|
ax.plot(angles, target_values, '#2ecc71', linestyle='--', linewidth=1, |
|
label='Meta', alpha=0.5) |
|
ax.fill_between(angles, target_values, [1]*len(angles), |
|
color='#2ecc71', alpha=0.1) |
|
ax.fill_between(angles, [0]*len(angles), min_values, |
|
color='#e74c3c', alpha=0.1) |
|
|
|
|
|
if baseline_metrics is not None: |
|
values_baseline = [baseline_metrics[m['key']]['normalized_score'] |
|
for m in metrics_config] |
|
values_baseline += values_baseline[:1] |
|
ax.plot(angles, values_baseline, '#888888', linewidth=2, |
|
label='Línea base', linestyle='--') |
|
ax.fill(angles, values_baseline, '#888888', alpha=0.1) |
|
|
|
|
|
label = 'Actual' if baseline_metrics else 'Tu escritura' |
|
color = '#3498db' if baseline_metrics else '#3498db' |
|
|
|
ax.plot(angles, values_current, color, linewidth=2, label=label) |
|
ax.fill(angles, values_current, color, alpha=0.2) |
|
|
|
|
|
legend_handles = [] |
|
if baseline_metrics: |
|
legend_handles.extend([ |
|
plt.Line2D([], [], color='#888888', linestyle='--', |
|
label='Línea base'), |
|
plt.Line2D([], [], color='#3498db', label='Actual') |
|
]) |
|
else: |
|
legend_handles.extend([ |
|
plt.Line2D([], [], color='#3498db', label='Tu escritura') |
|
]) |
|
|
|
legend_handles.extend([ |
|
plt.Line2D([], [], color='#e74c3c', linestyle='--', label='Mínimo'), |
|
plt.Line2D([], [], color='#2ecc71', linestyle='--', label='Meta') |
|
]) |
|
|
|
ax.legend( |
|
handles=legend_handles, |
|
loc='upper right', |
|
bbox_to_anchor=(1.3, 1.1), |
|
fontsize=10, |
|
frameon=True, |
|
facecolor='white', |
|
edgecolor='none', |
|
shadow=True |
|
) |
|
|
|
plt.tight_layout() |
|
st.pyplot(fig) |
|
plt.close() |
|
|
|
except Exception as e: |
|
logger.error(f"Error mostrando gráfico radar: {str(e)}") |
|
st.error("Error al mostrar el gráfico") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def suggest_improvement_tools_list(dimension): |
|
""" |
|
Retorna en forma de lista las herramientas sugeridas |
|
basadas en 'ANALYSIS_DIMENSION_MAPPING'. |
|
""" |
|
suggestions = [] |
|
for analysis, mapping in ANALYSIS_DIMENSION_MAPPING.items(): |
|
|
|
if dimension in mapping['primary'] or dimension in mapping['secondary']: |
|
suggestions.extend(mapping['tools']) |
|
|
|
return suggestions if suggestions else ["Sin sugerencias específicas."] |
|
|
|
|
|
def prepare_metrics_config(metrics, text_type='student_essay'): |
|
""" |
|
Prepara la configuración de métricas en el mismo formato que display_results. |
|
Args: |
|
metrics: Diccionario con las métricas analizadas |
|
text_type: Tipo de texto para los umbrales |
|
Returns: |
|
list: Lista de configuraciones de métricas |
|
""" |
|
|
|
thresholds = TEXT_TYPES[text_type]['thresholds'] |
|
|
|
|
|
return [ |
|
{ |
|
'label': "Vocabulario", |
|
'key': 'vocabulary', |
|
'value': metrics['vocabulary']['normalized_score'], |
|
'help': "Riqueza y variedad del vocabulario", |
|
'thresholds': thresholds['vocabulary'] |
|
}, |
|
{ |
|
'label': "Estructura", |
|
'key': 'structure', |
|
'value': metrics['structure']['normalized_score'], |
|
'help': "Organización y complejidad de oraciones", |
|
'thresholds': thresholds['structure'] |
|
}, |
|
{ |
|
'label': "Cohesión", |
|
'key': 'cohesion', |
|
'value': metrics['cohesion']['normalized_score'], |
|
'help': "Conexión y fluidez entre ideas", |
|
'thresholds': thresholds['cohesion'] |
|
}, |
|
{ |
|
'label': "Claridad", |
|
'key': 'clarity', |
|
'value': metrics['clarity']['normalized_score'], |
|
'help': "Facilidad de comprensión del texto", |
|
'thresholds': thresholds['clarity'] |
|
} |
|
] |
|
|
|
|