|
|
|
import matplotlib.pyplot as plt |
|
import io |
|
import base64 |
|
from .mongo_db import insert_document, find_documents, update_document, delete_document |
|
from datetime import datetime, timezone |
|
import logging |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
COLLECTION_NAME = 'student_discourse_analysis' |
|
|
|
def store_student_discourse_result(username, text1, text2, analysis_result): |
|
""" |
|
Guarda el resultado del análisis de discurso comparativo en MongoDB. |
|
Args: |
|
username: Nombre del usuario |
|
text1: Primer texto analizado (patrón) |
|
text2: Segundo texto analizado (comparación) |
|
analysis_result: Resultado del análisis |
|
""" |
|
try: |
|
|
|
graph1_data = None |
|
graph2_data = None |
|
combined_graph_data = None |
|
|
|
|
|
if 'graph1' in analysis_result: |
|
buf = io.BytesIO() |
|
analysis_result['graph1'].savefig(buf, format='png') |
|
buf.seek(0) |
|
graph1_data = base64.b64encode(buf.getvalue()).decode('utf-8') |
|
|
|
|
|
if 'graph2' in analysis_result: |
|
buf = io.BytesIO() |
|
analysis_result['graph2'].savefig(buf, format='png') |
|
buf.seek(0) |
|
graph2_data = base64.b64encode(buf.getvalue()).decode('utf-8') |
|
|
|
|
|
if graph1_data and graph2_data: |
|
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(20, 10)) |
|
|
|
|
|
img1 = plt.imread(io.BytesIO(base64.b64decode(graph1_data))) |
|
img2 = plt.imread(io.BytesIO(base64.b64decode(graph2_data))) |
|
|
|
ax1.imshow(img1) |
|
ax1.axis('off') |
|
ax1.set_title("Documento 1: Relaciones Conceptuales") |
|
|
|
ax2.imshow(img2) |
|
ax2.axis('off') |
|
ax2.set_title("Documento 2: Relaciones Conceptuales") |
|
|
|
|
|
buf = io.BytesIO() |
|
fig.savefig(buf, format='png') |
|
buf.seek(0) |
|
combined_graph_data = base64.b64encode(buf.getvalue()).decode('utf-8') |
|
plt.close(fig) |
|
|
|
|
|
analysis_document = { |
|
'username': username, |
|
'timestamp': datetime.now(timezone.utc).isoformat(), |
|
'text1': text1, |
|
'text2': text2, |
|
'analysis_type': 'discourse', |
|
'key_concepts1': analysis_result.get('key_concepts1', []), |
|
'key_concepts2': analysis_result.get('key_concepts2', []), |
|
'graph1': graph1_data, |
|
'graph2': graph2_data, |
|
'combined_graph': combined_graph_data |
|
} |
|
|
|
|
|
result = insert_document(COLLECTION_NAME, analysis_document) |
|
if result: |
|
logger.info(f"Análisis del discurso guardado con ID: {result} para el usuario: {username}") |
|
return True |
|
|
|
logger.error("No se pudo insertar el documento en MongoDB") |
|
return False |
|
|
|
except Exception as e: |
|
logger.error(f"Error al guardar el análisis del discurso: {str(e)}") |
|
return False |
|
|
|
def get_student_discourse_analysis(username, limit=10): |
|
""" |
|
Recupera los análisis del discurso de un estudiante. |
|
""" |
|
try: |
|
query = { |
|
"username": username, |
|
"analysis_type": "discourse" |
|
} |
|
return find_documents(COLLECTION_NAME, query, sort=[("timestamp", -1)], limit=limit) |
|
except Exception as e: |
|
logger.error(f"Error al recuperar análisis del discurso: {str(e)}") |
|
return [] |
|
|
|
def get_student_discourse_data(username): |
|
""" |
|
Obtiene un resumen de los análisis del discurso de un estudiante. |
|
""" |
|
try: |
|
analyses = get_student_discourse_analysis(username, limit=None) |
|
formatted_analyses = [] |
|
|
|
for analysis in analyses: |
|
formatted_analysis = { |
|
'timestamp': analysis['timestamp'], |
|
'text1': analysis.get('text1', ''), |
|
'text2': analysis.get('text2', ''), |
|
'key_concepts1': analysis.get('key_concepts1', []), |
|
'key_concepts2': analysis.get('key_concepts2', []) |
|
} |
|
formatted_analyses.append(formatted_analysis) |
|
|
|
return {'entries': formatted_analyses} |
|
|
|
except Exception as e: |
|
logger.error(f"Error al obtener datos del discurso: {str(e)}") |
|
return {'entries': []} |
|
|
|
def update_student_discourse_analysis(analysis_id, update_data): |
|
""" |
|
Actualiza un análisis del discurso existente. |
|
""" |
|
try: |
|
query = {"_id": analysis_id} |
|
update = {"$set": update_data} |
|
return update_document(COLLECTION_NAME, query, update) |
|
except Exception as e: |
|
logger.error(f"Error al actualizar análisis del discurso: {str(e)}") |
|
return False |
|
|
|
def delete_student_discourse_analysis(analysis_id): |
|
""" |
|
Elimina un análisis del discurso. |
|
""" |
|
try: |
|
query = {"_id": analysis_id} |
|
return delete_document(COLLECTION_NAME, query) |
|
except Exception as e: |
|
logger.error(f"Error al eliminar análisis del discurso: {str(e)}") |
|
return False |