File size: 9,807 Bytes
724e476
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c58df45
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
# modules/text_analysis/semantic_analysis.py
# [Mantener todas las importaciones y constantes existentes...]

import streamlit as st
import spacy
import networkx as nx
import matplotlib.pyplot as plt
import io
import base64
from collections import Counter, defaultdict
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import logging

logger = logging.getLogger(__name__)


# Define colors for grammatical categories
POS_COLORS = {
    'ADJ': '#FFA07A', 'ADP': '#98FB98', 'ADV': '#87CEFA', 'AUX': '#DDA0DD',
    'CCONJ': '#F0E68C', 'DET': '#FFB6C1', 'INTJ': '#FF6347', 'NOUN': '#90EE90',
    'NUM': '#FAFAD2', 'PART': '#D3D3D3', 'PRON': '#FFA500', 'PROPN': '#20B2AA',
    'SCONJ': '#DEB887', 'SYM': '#7B68EE', 'VERB': '#FF69B4', 'X': '#A9A9A9',
}

POS_TRANSLATIONS = {
    'es': {
        'ADJ': 'Adjetivo', 'ADP': 'Preposición', 'ADV': 'Adverbio', 'AUX': 'Auxiliar',
        'CCONJ': 'Conjunción Coordinante', 'DET': 'Determinante', 'INTJ': 'Interjección',
        'NOUN': 'Sustantivo', 'NUM': 'Número', 'PART': 'Partícula', 'PRON': 'Pronombre',
        'PROPN': 'Nombre Propio', 'SCONJ': 'Conjunción Subordinante', 'SYM': 'Símbolo',
        'VERB': 'Verbo', 'X': 'Otro',
    },
    'en': {
        'ADJ': 'Adjective', 'ADP': 'Preposition', 'ADV': 'Adverb', 'AUX': 'Auxiliary',
        'CCONJ': 'Coordinating Conjunction', 'DET': 'Determiner', 'INTJ': 'Interjection',
        'NOUN': 'Noun', 'NUM': 'Number', 'PART': 'Particle', 'PRON': 'Pronoun',
        'PROPN': 'Proper Noun', 'SCONJ': 'Subordinating Conjunction', 'SYM': 'Symbol',
        'VERB': 'Verb', 'X': 'Other',
    },
    'fr': {
        'ADJ': 'Adjectif', 'ADP': 'Préposition', 'ADV': 'Adverbe', 'AUX': 'Auxiliaire',
        'CCONJ': 'Conjonction de Coordination', 'DET': 'Déterminant', 'INTJ': 'Interjection',
        'NOUN': 'Nom', 'NUM': 'Nombre', 'PART': 'Particule', 'PRON': 'Pronom',
        'PROPN': 'Nom Propre', 'SCONJ': 'Conjonction de Subordination', 'SYM': 'Symbole',
        'VERB': 'Verbe', 'X': 'Autre',
    }
}

ENTITY_LABELS = {
    'es': {
        "Personas": "lightblue",
        "Lugares": "lightcoral",
        "Inventos": "lightgreen",
        "Fechas": "lightyellow",
        "Conceptos": "lightpink"
    },
    'en': {
        "People": "lightblue",
        "Places": "lightcoral",
        "Inventions": "lightgreen",
        "Dates": "lightyellow",
        "Concepts": "lightpink"
    },
    'fr': {
        "Personnes": "lightblue",
        "Lieux": "lightcoral",
        "Inventions": "lightgreen",
        "Dates": "lightyellow",
        "Concepts": "lightpink"
    }
}

##############################################################################################################
def perform_semantic_analysis(text, nlp, lang_code):
    """
    Realiza el análisis semántico completo del texto.
    Args:
        text: Texto a analizar
        nlp: Modelo de spaCy
        lang_code: Código del idioma
    Returns:
        dict: Resultados del análisis
    """
    
    logger.info(f"Starting semantic analysis for language: {lang_code}")
    try:
        doc = nlp(text)
        key_concepts = identify_key_concepts(doc)
        concept_graph = create_concept_graph(doc, key_concepts)
        concept_graph_fig = visualize_concept_graph(concept_graph, lang_code)
        entities = extract_entities(doc, lang_code)
        entity_graph = create_entity_graph(entities)
        entity_graph_fig = visualize_entity_graph(entity_graph, lang_code)

        # Convertir figuras a bytes
        concept_graph_bytes = fig_to_bytes(concept_graph_fig)
        entity_graph_bytes = fig_to_bytes(entity_graph_fig)

        logger.info("Semantic analysis completed successfully")
        return {
            'key_concepts': key_concepts,
            'concept_graph': concept_graph_bytes,
            'entities': entities,
            'entity_graph': entity_graph_bytes
        }
    except Exception as e:
        logger.error(f"Error in perform_semantic_analysis: {str(e)}")
        raise


def fig_to_bytes(fig):
    buf = io.BytesIO()
    fig.savefig(buf, format='png')
    buf.seek(0)
    return buf.getvalue()


def fig_to_html(fig):
    buf = io.BytesIO()
    fig.savefig(buf, format='png')
    buf.seek(0)
    img_str = base64.b64encode(buf.getvalue()).decode()
    return f'<img src="data:image/png;base64,{img_str}" />'



def identify_key_concepts(doc):
    logger.info("Identifying key concepts")
    word_freq = Counter([token.lemma_.lower() for token in doc if token.pos_ in ['NOUN', 'VERB'] and not token.is_stop])
    key_concepts = word_freq.most_common(10)
    return [(concept, float(freq)) for concept, freq in key_concepts]


def create_concept_graph(doc, key_concepts):
    G = nx.Graph()
    for concept, freq in key_concepts:
        G.add_node(concept, weight=freq)
    for sent in doc.sents:
        sent_concepts = [token.lemma_.lower() for token in sent if token.lemma_.lower() in dict(key_concepts)]
        for i, concept1 in enumerate(sent_concepts):
            for concept2 in sent_concepts[i+1:]:
                if G.has_edge(concept1, concept2):
                    G[concept1][concept2]['weight'] += 1
                else:
                    G.add_edge(concept1, concept2, weight=1)
    return G

def visualize_concept_graph(G, lang_code):
    fig, ax = plt.subplots(figsize=(12, 8))
    pos = nx.spring_layout(G, k=0.5, iterations=50)
    node_sizes = [G.nodes[node]['weight'] * 100 for node in G.nodes()]
    nx.draw_networkx_nodes(G, pos, node_size=node_sizes, node_color='lightblue', alpha=0.8, ax=ax)
    nx.draw_networkx_labels(G, pos, font_size=10, font_weight="bold", ax=ax)
    edge_weights = [G[u][v]['weight'] for u, v in G.edges()]
    nx.draw_networkx_edges(G, pos, width=edge_weights, alpha=0.5, ax=ax)
    title = {
        'es': "Relaciones entre Conceptos Clave",
        'en': "Key Concept Relations",
        'fr': "Relations entre Concepts Clés"
    }
    ax.set_title(title[lang_code], fontsize=16)
    ax.axis('off')
    plt.tight_layout()
    return fig

def create_entity_graph(entities):
    G = nx.Graph()
    for entity_type, entity_list in entities.items():
        for entity in entity_list:
            G.add_node(entity, type=entity_type)
        for i, entity1 in enumerate(entity_list):
            for entity2 in entity_list[i+1:]:
                G.add_edge(entity1, entity2)
    return G

def visualize_entity_graph(G, lang_code):
    fig, ax = plt.subplots(figsize=(12, 8))
    pos = nx.spring_layout(G)
    for entity_type, color in ENTITY_LABELS[lang_code].items():
        node_list = [node for node, data in G.nodes(data=True) if data['type'] == entity_type]
        nx.draw_networkx_nodes(G, pos, nodelist=node_list, node_color=color, node_size=500, alpha=0.8, ax=ax)
    nx.draw_networkx_edges(G, pos, width=1, alpha=0.5, ax=ax)
    nx.draw_networkx_labels(G, pos, font_size=8, font_weight="bold", ax=ax)
    ax.set_title(f"Relaciones entre Entidades ({lang_code})", fontsize=16)
    ax.axis('off')
    plt.tight_layout()
    return fig


#################################################################################
def create_topic_graph(topics, doc):
    G = nx.Graph()
    for topic in topics:
        G.add_node(topic, weight=doc.text.count(topic))
    for i, topic1 in enumerate(topics):
        for topic2 in topics[i+1:]:
            weight = sum(1 for sent in doc.sents if topic1 in sent.text and topic2 in sent.text)
            if weight > 0:
                G.add_edge(topic1, topic2, weight=weight)
    return G

def visualize_topic_graph(G, lang_code):
    fig, ax = plt.subplots(figsize=(12, 8))
    pos = nx.spring_layout(G)
    node_sizes = [G.nodes[node]['weight'] * 100 for node in G.nodes()]
    nx.draw_networkx_nodes(G, pos, node_size=node_sizes, node_color='lightgreen', alpha=0.8, ax=ax)
    nx.draw_networkx_labels(G, pos, font_size=10, font_weight="bold", ax=ax)
    edge_weights = [G[u][v]['weight'] for u, v in G.edges()]
    nx.draw_networkx_edges(G, pos, width=edge_weights, alpha=0.5, ax=ax)
    ax.set_title(f"Relaciones entre Temas ({lang_code})", fontsize=16)
    ax.axis('off')
    plt.tight_layout()
    return fig

###########################################################################################
def generate_summary(doc, lang_code):
    sentences = list(doc.sents)
    summary = sentences[:3]  # Toma las primeras 3 oraciones como resumen
    return " ".join([sent.text for sent in summary])

def extract_entities(doc, lang_code):
    entities = defaultdict(list)
    for ent in doc.ents:
        if ent.label_ in ENTITY_LABELS[lang_code]:
            entities[ent.label_].append(ent.text)
    return dict(entities)

def analyze_sentiment(doc, lang_code):
    positive_words = sum(1 for token in doc if token.sentiment > 0)
    negative_words = sum(1 for token in doc if token.sentiment < 0)
    total_words = len(doc)
    if positive_words > negative_words:
        return "Positivo"
    elif negative_words > positive_words:
        return "Negativo"
    else:
        return "Neutral"

def extract_topics(doc, lang_code):
    vectorizer = TfidfVectorizer(stop_words='english', max_features=5)
    tfidf_matrix = vectorizer.fit_transform([doc.text])
    feature_names = vectorizer.get_feature_names_out()
    return list(feature_names)

# Asegúrate de que todas las funciones necesarias estén exportadas
__all__ = [
    'perform_semantic_analysis',
    'identify_key_concepts',
    'create_concept_graph',
    'visualize_concept_graph',
    'create_entity_graph',
    'visualize_entity_graph',
    'generate_summary',
    'extract_entities',
    'analyze_sentiment',
    'create_topic_graph',
    'visualize_topic_graph',
    'extract_topics',
    'ENTITY_LABELS',
    'POS_COLORS',
    'POS_TRANSLATIONS'
]