File size: 10,138 Bytes
c58df45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import streamlit as st
from streamlit_float import *
import logging
import sys
import io
from io import BytesIO
from datetime import datetime
import re
import base64
import matplotlib.pyplot as plt
import plotly.graph_objects as go
import pandas as pd
import numpy as np

from .flexible_analysis_handler import FlexibleAnalysisHandler

from .semantic_float_reset import semantic_float_init, float_graph, toggle_float_visibility, update_float_content

from .semantic_process import process_semantic_analysis

from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input
from ..database.database_oldFromV2 import manage_file_contents, delete_file, get_user_files
from ..utils.widget_utils import generate_unique_key


semantic_float_init()
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)

def get_translation(t, key, default):
    return t.get(key, default)


##
def fig_to_base64(fig):
    buf = io.BytesIO()
    fig.savefig(buf, format='png')
    buf.seek(0)
    img_str = base64.b64encode(buf.getvalue()).decode()
    return f'<img src="data:image/png;base64,{img_str}" />'
##


def display_semantic_interface(lang_code, nlp_models, t):
    #st.set_page_config(layout="wide")

    if 'semantic_chatbot' not in st.session_state:
        st.session_state.semantic_chatbot = initialize_chatbot('semantic')

    if 'semantic_chat_history' not in st.session_state:
        st.session_state.semantic_chat_history = []

    if 'show_graph' not in st.session_state:
        st.session_state.show_graph = False

    if 'graph_id' not in st.session_state:
        st.session_state.graph_id = None

    if 'semantic_chatbot' not in st.session_state:
        st.session_state.semantic_chatbot = initialize_chatbot('semantic')

    if 'semantic_chat_history' not in st.session_state:
        st.session_state.semantic_chat_history = []

    if 'show_graph' not in st.session_state:
        st.session_state.show_graph = False

    st.markdown("""

        <style>

        .chat-message-container {

            height: calc(100vh - 200px);

            overflow-y: auto;

            display: flex;

            flex-direction: column-reverse;

        }

        .chat-input-container {

            position: fixed;

            bottom: 0;

            left: 0;

            right: 0;

            padding: 1rem;

            background-color: white;

            z-index: 1000;

        }

        .semantic-initial-message {

            background-color: #f0f2f6;

            border-left: 5px solid #4CAF50;

            padding: 10px;

            border-radius: 5px;

            font-size: 16px;

            margin-bottom: 20px;

        }

        </style>

    """, unsafe_allow_html=True)

    st.markdown(f"""

        <div class="semantic-initial-message">

        {t['semantic_initial_message']}

        </div>

    """, unsafe_allow_html=True)

    col1, col2 = st.columns([2, 1])

    with col1:
        st.subheader("Chat with AI")

        chat_container = st.container()
        with chat_container:
            st.markdown('<div class="chat-message-container">', unsafe_allow_html=True)
            for message in reversed(st.session_state.semantic_chat_history):
                with st.chat_message(message["role"]):
                    st.markdown(message["content"])
            st.markdown('</div>', unsafe_allow_html=True)

        st.markdown('<div class="chat-input-container">', unsafe_allow_html=True)
        user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input'))
        send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message'))
        clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat'))
        st.markdown('</div>', unsafe_allow_html=True)

        if send_button and user_input:
            st.session_state.semantic_chat_history.append({"role": "user", "content": user_input})

            if user_input.startswith('/analyze_current'):
                response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', ''))
            else:
                response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('file_contents', ''))

            st.session_state.semantic_chat_history.append({"role": "assistant", "content": response})
            st.rerun()

        if clear_button:
            st.session_state.semantic_chat_history = []
            st.rerun()

    with col2:
        st.subheader("Document Analysis")
        user_files = get_user_files(st.session_state.username, 'semantic')
        file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files]
        selected_file = st.selectbox("Select a file to analyze", options=file_options, key=generate_unique_key('semantic', 'file_selector'))

    if st.button("Analyze Document", key=generate_unique_key('semantic', 'analyze_document')):
        if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'):
            file_contents = manage_file_contents(st.session_state.username, selected_file, 'semantic')
            if file_contents:
                st.session_state.file_contents = file_contents
                with st.spinner("Analyzing..."):
                    try:
                        nlp_model = nlp_models[lang_code]
                        logger.debug("Calling process_semantic_analysis")
                        analysis_result = process_semantic_analysis(file_contents, nlp_model, lang_code)

                        # Crear una instancia de FlexibleAnalysisHandler con los resultados del análisis
                        handler = FlexibleAnalysisHandler(analysis_result)

                        logger.debug(f"Type of analysis_result: {type(analysis_result)}")
                        logger.debug(f"Keys in analysis_result: {analysis_result.keys() if isinstance(analysis_result, dict) else 'Not a dict'}")

                        st.session_state.concept_graph = handler.get_concept_graph()
                        st.session_state.entity_graph = handler.get_entity_graph()
                        st.session_state.key_concepts = handler.get_key_concepts()
                        st.session_state.show_graph = True
                        st.success("Analysis completed successfully")
                    except Exception as e:
                        logger.error(f"Error during analysis: {str(e)}")
                        st.error(f"Error during analysis: {str(e)}")
            else:
                st.error("Error loading file contents")
        else:
            st.error("Please select a file to analyze")

        st.subheader("File Management")

        uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader'))
        if uploaded_file is not None:
            file_contents = uploaded_file.getvalue().decode('utf-8')
            if manage_file_contents(st.session_state.username, uploaded_file.name, file_contents):
                st.success(f"File {uploaded_file.name} uploaded and saved successfully")
            else:
                st.error("Error uploading file")

        st.markdown("---")

        st.subheader("Manage Uploaded Files")

        user_files = get_user_files(st.session_state.username, 'semantic')
        if user_files:
            for file in user_files:
                col1, col2 = st.columns([3, 1])
                with col1:
                    st.write(file['file_name'])
                with col2:
                    if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"):
                        if delete_file(st.session_state.username, file['file_name'], 'semantic'):
                            st.success(f"File {file['file_name']} deleted successfully")
                            st.rerun()
                        else:
                            st.error(f"Error deleting file {file['file_name']}")
        else:
            st.info("No files uploaded yet.")

    #########################################################################################################################
    # Floating graph visualization
    if st.session_state.show_graph:
        if st.session_state.graph_id is None:
            st.session_state.graph_id = float_graph(
                content="<div id='semantic-graph'>Loading graph...</div>",
                width="40%",
                height="60%",
                position="bottom-right",
                shadow=2,
                transition=1
            )

        graph_id = st.session_state.graph_id

        if 'key_concepts' in st.session_state:
            key_concepts_html = "<h3>Key Concepts:</h3><p>" + ', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts]) + "</p>"
            update_float_content(graph_id, key_concepts_html)

        tab_concept, tab_entity = st.tabs(["Concept Graph", "Entity Graph"])

        with tab_concept:
            if 'concept_graph' in st.session_state:
                update_float_content(graph_id, st.session_state.concept_graph)
            else:
                update_float_content(graph_id, "No concept graph available.")

        with tab_entity:
            if 'entity_graph' in st.session_state:
                update_float_content(graph_id, st.session_state.entity_graph)
            else:
                update_float_content(graph_id, "No entity graph available.")

        if st.button("Close Graph", key="close_graph"):
            toggle_float_visibility(graph_id, False)
            st.session_state.show_graph = False
            st.session_state.graph_id = None
            st.rerun()