File size: 16,389 Bytes
724e476 82bea36 d08e826 82bea36 724e476 82bea36 724e476 82bea36 5855e51 82bea36 5855e51 82bea36 5855e51 724e476 82bea36 5855e51 82bea36 5855e51 82bea36 5855e51 724e476 5855e51 724e476 c58df45 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 |
# modules/text_analysis/semantic_analysis.py
# [Mantener todas las importaciones y constantes existentes...]
import streamlit as st
import spacy
import networkx as nx
import matplotlib.pyplot as plt
import io
import base64
from collections import Counter, defaultdict
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import logging
logger = logging.getLogger(__name__)
# Define colors for grammatical categories
POS_COLORS = {
'ADJ': '#FFA07A', 'ADP': '#98FB98', 'ADV': '#87CEFA', 'AUX': '#DDA0DD',
'CCONJ': '#F0E68C', 'DET': '#FFB6C1', 'INTJ': '#FF6347', 'NOUN': '#90EE90',
'NUM': '#FAFAD2', 'PART': '#D3D3D3', 'PRON': '#FFA500', 'PROPN': '#20B2AA',
'SCONJ': '#DEB887', 'SYM': '#7B68EE', 'VERB': '#FF69B4', 'X': '#A9A9A9',
}
POS_TRANSLATIONS = {
'es': {
'ADJ': 'Adjetivo', 'ADP': 'Preposición', 'ADV': 'Adverbio', 'AUX': 'Auxiliar',
'CCONJ': 'Conjunción Coordinante', 'DET': 'Determinante', 'INTJ': 'Interjección',
'NOUN': 'Sustantivo', 'NUM': 'Número', 'PART': 'Partícula', 'PRON': 'Pronombre',
'PROPN': 'Nombre Propio', 'SCONJ': 'Conjunción Subordinante', 'SYM': 'Símbolo',
'VERB': 'Verbo', 'X': 'Otro',
},
'en': {
'ADJ': 'Adjective', 'ADP': 'Preposition', 'ADV': 'Adverb', 'AUX': 'Auxiliary',
'CCONJ': 'Coordinating Conjunction', 'DET': 'Determiner', 'INTJ': 'Interjection',
'NOUN': 'Noun', 'NUM': 'Number', 'PART': 'Particle', 'PRON': 'Pronoun',
'PROPN': 'Proper Noun', 'SCONJ': 'Subordinating Conjunction', 'SYM': 'Symbol',
'VERB': 'Verb', 'X': 'Other',
},
'fr': {
'ADJ': 'Adjectif', 'ADP': 'Préposition', 'ADV': 'Adverbe', 'AUX': 'Auxiliaire',
'CCONJ': 'Conjonction de Coordination', 'DET': 'Déterminant', 'INTJ': 'Interjection',
'NOUN': 'Nom', 'NUM': 'Nombre', 'PART': 'Particule', 'PRON': 'Pronom',
'PROPN': 'Nom Propre', 'SCONJ': 'Conjonction de Subordination', 'SYM': 'Symbole',
'VERB': 'Verbe', 'X': 'Autre',
}
}
ENTITY_LABELS = {
'es': {
"Personas": "lightblue",
"Lugares": "lightcoral",
"Inventos": "lightgreen",
"Fechas": "lightyellow",
"Conceptos": "lightpink"
},
'en': {
"People": "lightblue",
"Places": "lightcoral",
"Inventions": "lightgreen",
"Dates": "lightyellow",
"Concepts": "lightpink"
},
'fr': {
"Personnes": "lightblue",
"Lieux": "lightcoral",
"Inventions": "lightgreen",
"Dates": "lightyellow",
"Concepts": "lightpink"
}
}
CUSTOM_STOPWORDS = {
'es': {
# Artículos
'el', 'la', 'los', 'las', 'un', 'una', 'unos', 'unas',
# Preposiciones comunes
'a', 'ante', 'bajo', 'con', 'contra', 'de', 'desde', 'en',
'entre', 'hacia', 'hasta', 'para', 'por', 'según', 'sin',
'sobre', 'tras', 'durante', 'mediante',
# Conjunciones
'y', 'e', 'ni', 'o', 'u', 'pero', 'sino', 'porque',
# Pronombres
'yo', 'tú', 'él', 'ella', 'nosotros', 'vosotros', 'ellos',
'ellas', 'este', 'esta', 'ese', 'esa', 'aquel', 'aquella',
# Verbos auxiliares comunes
'ser', 'estar', 'haber', 'tener',
# Palabras comunes en textos académicos
'además', 'también', 'asimismo', 'sin embargo', 'no obstante',
'por lo tanto', 'entonces', 'así', 'luego', 'pues',
# Números escritos
'uno', 'dos', 'tres', 'primer', 'primera', 'segundo', 'segunda',
# Otras palabras comunes
'cada', 'todo', 'toda', 'todos', 'todas', 'otro', 'otra',
'donde', 'cuando', 'como', 'que', 'cual', 'quien',
'cuyo', 'cuya', 'hay', 'solo', 'ver', 'si', 'no',
# Símbolos y caracteres especiales
'#', '@', '/', '*', '+', '-', '=', '$', '%'
},
'en': {
# Articles
'the', 'a', 'an',
# Common prepositions
'in', 'on', 'at', 'by', 'for', 'with', 'about', 'against',
'between', 'into', 'through', 'during', 'before', 'after',
'above', 'below', 'to', 'from', 'up', 'down', 'of',
# Conjunctions
'and', 'or', 'but', 'nor', 'so', 'for', 'yet',
# Pronouns
'i', 'you', 'he', 'she', 'it', 'we', 'they', 'this',
'that', 'these', 'those', 'my', 'your', 'his', 'her',
# Auxiliary verbs
'be', 'am', 'is', 'are', 'was', 'were', 'been', 'have',
'has', 'had', 'do', 'does', 'did',
# Common academic words
'therefore', 'however', 'thus', 'hence', 'moreover',
'furthermore', 'nevertheless',
# Numbers written
'one', 'two', 'three', 'first', 'second', 'third',
# Other common words
'where', 'when', 'how', 'what', 'which', 'who',
'whom', 'whose', 'there', 'here', 'just', 'only',
# Symbols and special characters
'#', '@', '/', '*', '+', '-', '=', '$', '%'
},
'fr': {
# Articles
'le', 'la', 'les', 'un', 'une', 'des',
# Prepositions
'à', 'de', 'dans', 'sur', 'en', 'par', 'pour', 'avec',
'sans', 'sous', 'entre', 'derrière', 'chez', 'avant',
# Conjunctions
'et', 'ou', 'mais', 'donc', 'car', 'ni', 'or',
# Pronouns
'je', 'tu', 'il', 'elle', 'nous', 'vous', 'ils',
'elles', 'ce', 'cette', 'ces', 'celui', 'celle',
# Auxiliary verbs
'être', 'avoir', 'faire',
# Academic words
'donc', 'cependant', 'néanmoins', 'ainsi', 'toutefois',
'pourtant', 'alors',
# Numbers
'un', 'deux', 'trois', 'premier', 'première', 'second',
# Other common words
'où', 'quand', 'comment', 'que', 'qui', 'quoi',
'quel', 'quelle', 'plus', 'moins',
# Symbols
'#', '@', '/', '*', '+', '-', '=', '$', '%'
}
}
##############################################################################################################
def get_stopwords(lang_code):
"""
Obtiene el conjunto de stopwords para un idioma específico.
Combina las stopwords de spaCy con las personalizadas.
"""
try:
nlp = spacy.load(f'{lang_code}_core_news_sm')
spacy_stopwords = nlp.Defaults.stop_words
custom_stopwords = CUSTOM_STOPWORDS.get(lang_code, set())
return spacy_stopwords.union(custom_stopwords)
except:
return CUSTOM_STOPWORDS.get(lang_code, set())
def perform_semantic_analysis(text, nlp, lang_code):
"""
Realiza el análisis semántico completo del texto.
Args:
text: Texto a analizar
nlp: Modelo de spaCy
lang_code: Código del idioma
Returns:
dict: Resultados del análisis
"""
logger.info(f"Starting semantic analysis for language: {lang_code}")
try:
doc = nlp(text)
key_concepts = identify_key_concepts(doc)
concept_graph = create_concept_graph(doc, key_concepts)
concept_graph_fig = visualize_concept_graph(concept_graph, lang_code)
entities = extract_entities(doc, lang_code)
entity_graph = create_entity_graph(entities)
entity_graph_fig = visualize_entity_graph(entity_graph, lang_code)
# Convertir figuras a bytes
concept_graph_bytes = fig_to_bytes(concept_graph_fig)
entity_graph_bytes = fig_to_bytes(entity_graph_fig)
logger.info("Semantic analysis completed successfully")
return {
'key_concepts': key_concepts,
'concept_graph': concept_graph_bytes,
'entities': entities,
'entity_graph': entity_graph_bytes
}
except Exception as e:
logger.error(f"Error in perform_semantic_analysis: {str(e)}")
raise
def fig_to_bytes(fig):
buf = io.BytesIO()
fig.savefig(buf, format='png')
buf.seek(0)
return buf.getvalue()
def fig_to_html(fig):
buf = io.BytesIO()
fig.savefig(buf, format='png')
buf.seek(0)
img_str = base64.b64encode(buf.getvalue()).decode()
return f'<img src="data:image/png;base64,{img_str}" />'
def identify_key_concepts(doc, min_freq=2, min_length=3):
"""
Identifica conceptos clave en el texto.
Args:
doc: Documento procesado por spaCy
min_freq: Frecuencia mínima para considerar un concepto
min_length: Longitud mínima de palabra para considerar
Returns:
list: Lista de tuplas (concepto, frecuencia)
"""
try:
# Obtener stopwords para el idioma
stopwords = get_stopwords(doc.lang_)
# Contar frecuencias de palabras
word_freq = Counter()
for token in doc:
if (token.lemma_.lower() not in stopwords and
len(token.lemma_) >= min_length and
token.is_alpha and
not token.is_punct and
not token.like_num):
word_freq[token.lemma_.lower()] += 1
# Filtrar por frecuencia mínima
concepts = [(word, freq) for word, freq in word_freq.items()
if freq >= min_freq]
# Ordenar por frecuencia
concepts.sort(key=lambda x: x[1], reverse=True)
return concepts[:10] # Retornar los 10 conceptos más frecuentes
except Exception as e:
logger.error(f"Error en identify_key_concepts: {str(e)}")
return [] # Retornar lista vacía en caso de error
def create_concept_graph(doc, key_concepts):
"""
Crea un grafo de relaciones entre conceptos.
Args:
doc: Documento procesado por spaCy
key_concepts: Lista de tuplas (concepto, frecuencia)
Returns:
nx.Graph: Grafo de conceptos
"""
try:
G = nx.Graph()
# Crear un conjunto de conceptos clave para búsqueda rápida
concept_words = {concept[0].lower() for concept in key_concepts}
# Añadir nodos al grafo
for concept, freq in key_concepts:
G.add_node(concept.lower(), weight=freq)
# Analizar cada oración
for sent in doc.sents:
# Obtener conceptos en la oración actual
current_concepts = []
for token in sent:
if token.lemma_.lower() in concept_words:
current_concepts.append(token.lemma_.lower())
# Crear conexiones entre conceptos en la misma oración
for i, concept1 in enumerate(current_concepts):
for concept2 in current_concepts[i+1:]:
if concept1 != concept2:
# Si ya existe la arista, incrementar el peso
if G.has_edge(concept1, concept2):
G[concept1][concept2]['weight'] += 1
# Si no existe, crear nueva arista con peso 1
else:
G.add_edge(concept1, concept2, weight=1)
return G
except Exception as e:
logger.error(f"Error en create_concept_graph: {str(e)}")
# Retornar un grafo vacío en caso de error
return nx.Graph()
def visualize_concept_graph(G, lang_code):
"""
Visualiza el grafo de conceptos.
Args:
G: Grafo de networkx
lang_code: Código del idioma
Returns:
matplotlib.figure.Figure: Figura con el grafo visualizado
"""
try:
plt.figure(figsize=(12, 8))
# Calcular el layout del grafo
pos = nx.spring_layout(G)
# Obtener pesos de nodos y aristas
node_weights = [G.nodes[node].get('weight', 1) * 500 for node in G.nodes()]
edge_weights = [G[u][v].get('weight', 1) for u, v in G.edges()]
# Dibujar el grafo
nx.draw_networkx_nodes(G, pos,
node_size=node_weights,
node_color='lightblue',
alpha=0.6)
nx.draw_networkx_edges(G, pos,
width=edge_weights,
alpha=0.5,
edge_color='gray')
nx.draw_networkx_labels(G, pos,
font_size=10,
font_weight='bold')
plt.title("Red de conceptos relacionados")
plt.axis('off')
return plt.gcf()
except Exception as e:
logger.error(f"Error en visualize_concept_graph: {str(e)}")
# Retornar una figura vacía en caso de error
return plt.figure()
def create_entity_graph(entities):
G = nx.Graph()
for entity_type, entity_list in entities.items():
for entity in entity_list:
G.add_node(entity, type=entity_type)
for i, entity1 in enumerate(entity_list):
for entity2 in entity_list[i+1:]:
G.add_edge(entity1, entity2)
return G
def visualize_entity_graph(G, lang_code):
fig, ax = plt.subplots(figsize=(12, 8))
pos = nx.spring_layout(G)
for entity_type, color in ENTITY_LABELS[lang_code].items():
node_list = [node for node, data in G.nodes(data=True) if data['type'] == entity_type]
nx.draw_networkx_nodes(G, pos, nodelist=node_list, node_color=color, node_size=500, alpha=0.8, ax=ax)
nx.draw_networkx_edges(G, pos, width=1, alpha=0.5, ax=ax)
nx.draw_networkx_labels(G, pos, font_size=8, font_weight="bold", ax=ax)
ax.set_title(f"Relaciones entre Entidades ({lang_code})", fontsize=16)
ax.axis('off')
plt.tight_layout()
return fig
#################################################################################
def create_topic_graph(topics, doc):
G = nx.Graph()
for topic in topics:
G.add_node(topic, weight=doc.text.count(topic))
for i, topic1 in enumerate(topics):
for topic2 in topics[i+1:]:
weight = sum(1 for sent in doc.sents if topic1 in sent.text and topic2 in sent.text)
if weight > 0:
G.add_edge(topic1, topic2, weight=weight)
return G
def visualize_topic_graph(G, lang_code):
fig, ax = plt.subplots(figsize=(12, 8))
pos = nx.spring_layout(G)
node_sizes = [G.nodes[node]['weight'] * 100 for node in G.nodes()]
nx.draw_networkx_nodes(G, pos, node_size=node_sizes, node_color='lightgreen', alpha=0.8, ax=ax)
nx.draw_networkx_labels(G, pos, font_size=10, font_weight="bold", ax=ax)
edge_weights = [G[u][v]['weight'] for u, v in G.edges()]
nx.draw_networkx_edges(G, pos, width=edge_weights, alpha=0.5, ax=ax)
ax.set_title(f"Relaciones entre Temas ({lang_code})", fontsize=16)
ax.axis('off')
plt.tight_layout()
return fig
###########################################################################################
def generate_summary(doc, lang_code):
sentences = list(doc.sents)
summary = sentences[:3] # Toma las primeras 3 oraciones como resumen
return " ".join([sent.text for sent in summary])
def extract_entities(doc, lang_code):
entities = defaultdict(list)
for ent in doc.ents:
if ent.label_ in ENTITY_LABELS[lang_code]:
entities[ent.label_].append(ent.text)
return dict(entities)
def analyze_sentiment(doc, lang_code):
positive_words = sum(1 for token in doc if token.sentiment > 0)
negative_words = sum(1 for token in doc if token.sentiment < 0)
total_words = len(doc)
if positive_words > negative_words:
return "Positivo"
elif negative_words > positive_words:
return "Negativo"
else:
return "Neutral"
def extract_topics(doc, lang_code):
vectorizer = TfidfVectorizer(stop_words='english', max_features=5)
tfidf_matrix = vectorizer.fit_transform([doc.text])
feature_names = vectorizer.get_feature_names_out()
return list(feature_names)
# Asegúrate de que todas las funciones necesarias estén exportadas
__all__ = [
'perform_semantic_analysis',
'identify_key_concepts',
'create_concept_graph',
'visualize_concept_graph',
'create_entity_graph',
'visualize_entity_graph',
'generate_summary',
'extract_entities',
'analyze_sentiment',
'create_topic_graph',
'visualize_topic_graph',
'extract_topics',
'ENTITY_LABELS',
'POS_COLORS',
'POS_TRANSLATIONS'
] |