File size: 16,389 Bytes
724e476
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82bea36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d08e826
82bea36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
724e476
82bea36
 
 
 
 
 
 
 
 
 
 
 
 
 
724e476
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82bea36
 
5855e51
 
 
 
 
 
 
82bea36
5855e51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82bea36
5855e51
 
 
 
 
 
 
 
 
724e476
 
 
82bea36
 
5855e51
 
 
 
 
82bea36
5855e51
 
82bea36
5855e51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
724e476
 
5855e51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
724e476
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c58df45
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
# modules/text_analysis/semantic_analysis.py
# [Mantener todas las importaciones y constantes existentes...]

import streamlit as st
import spacy
import networkx as nx
import matplotlib.pyplot as plt
import io
import base64
from collections import Counter, defaultdict
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import logging

logger = logging.getLogger(__name__)


# Define colors for grammatical categories
POS_COLORS = {
    'ADJ': '#FFA07A', 'ADP': '#98FB98', 'ADV': '#87CEFA', 'AUX': '#DDA0DD',
    'CCONJ': '#F0E68C', 'DET': '#FFB6C1', 'INTJ': '#FF6347', 'NOUN': '#90EE90',
    'NUM': '#FAFAD2', 'PART': '#D3D3D3', 'PRON': '#FFA500', 'PROPN': '#20B2AA',
    'SCONJ': '#DEB887', 'SYM': '#7B68EE', 'VERB': '#FF69B4', 'X': '#A9A9A9',
}

POS_TRANSLATIONS = {
    'es': {
        'ADJ': 'Adjetivo', 'ADP': 'Preposición', 'ADV': 'Adverbio', 'AUX': 'Auxiliar',
        'CCONJ': 'Conjunción Coordinante', 'DET': 'Determinante', 'INTJ': 'Interjección',
        'NOUN': 'Sustantivo', 'NUM': 'Número', 'PART': 'Partícula', 'PRON': 'Pronombre',
        'PROPN': 'Nombre Propio', 'SCONJ': 'Conjunción Subordinante', 'SYM': 'Símbolo',
        'VERB': 'Verbo', 'X': 'Otro',
    },
    'en': {
        'ADJ': 'Adjective', 'ADP': 'Preposition', 'ADV': 'Adverb', 'AUX': 'Auxiliary',
        'CCONJ': 'Coordinating Conjunction', 'DET': 'Determiner', 'INTJ': 'Interjection',
        'NOUN': 'Noun', 'NUM': 'Number', 'PART': 'Particle', 'PRON': 'Pronoun',
        'PROPN': 'Proper Noun', 'SCONJ': 'Subordinating Conjunction', 'SYM': 'Symbol',
        'VERB': 'Verb', 'X': 'Other',
    },
    'fr': {
        'ADJ': 'Adjectif', 'ADP': 'Préposition', 'ADV': 'Adverbe', 'AUX': 'Auxiliaire',
        'CCONJ': 'Conjonction de Coordination', 'DET': 'Déterminant', 'INTJ': 'Interjection',
        'NOUN': 'Nom', 'NUM': 'Nombre', 'PART': 'Particule', 'PRON': 'Pronom',
        'PROPN': 'Nom Propre', 'SCONJ': 'Conjonction de Subordination', 'SYM': 'Symbole',
        'VERB': 'Verbe', 'X': 'Autre',
    }
}

ENTITY_LABELS = {
    'es': {
        "Personas": "lightblue",
        "Lugares": "lightcoral",
        "Inventos": "lightgreen",
        "Fechas": "lightyellow",
        "Conceptos": "lightpink"
    },
    'en': {
        "People": "lightblue",
        "Places": "lightcoral",
        "Inventions": "lightgreen",
        "Dates": "lightyellow",
        "Concepts": "lightpink"
    },
    'fr': {
        "Personnes": "lightblue",
        "Lieux": "lightcoral",
        "Inventions": "lightgreen",
        "Dates": "lightyellow",
        "Concepts": "lightpink"
    }
}

CUSTOM_STOPWORDS = {
    'es': {
        # Artículos
        'el', 'la', 'los', 'las', 'un', 'una', 'unos', 'unas',
        # Preposiciones comunes
        'a', 'ante', 'bajo', 'con', 'contra', 'de', 'desde', 'en',
        'entre', 'hacia', 'hasta', 'para', 'por', 'según', 'sin',
        'sobre', 'tras', 'durante', 'mediante',
        # Conjunciones
        'y', 'e', 'ni', 'o', 'u', 'pero', 'sino', 'porque',
        # Pronombres
        'yo', 'tú', 'él', 'ella', 'nosotros', 'vosotros', 'ellos',
        'ellas', 'este', 'esta', 'ese', 'esa', 'aquel', 'aquella',
        # Verbos auxiliares comunes
        'ser', 'estar', 'haber', 'tener',
        # Palabras comunes en textos académicos
        'además', 'también', 'asimismo', 'sin embargo', 'no obstante',
        'por lo tanto', 'entonces', 'así', 'luego', 'pues',
        # Números escritos
        'uno', 'dos', 'tres', 'primer', 'primera', 'segundo', 'segunda',
        # Otras palabras comunes
        'cada', 'todo', 'toda', 'todos', 'todas', 'otro', 'otra',
        'donde', 'cuando', 'como', 'que', 'cual', 'quien',
        'cuyo', 'cuya', 'hay', 'solo', 'ver', 'si', 'no',
        # Símbolos y caracteres especiales
        '#', '@', '/', '*', '+', '-', '=', '$', '%'
    },
    'en': {
        # Articles
        'the', 'a', 'an',
        # Common prepositions
        'in', 'on', 'at', 'by', 'for', 'with', 'about', 'against',
        'between', 'into', 'through', 'during', 'before', 'after',
        'above', 'below', 'to', 'from', 'up', 'down', 'of',
        # Conjunctions
        'and', 'or', 'but', 'nor', 'so', 'for', 'yet',
        # Pronouns
        'i', 'you', 'he', 'she', 'it', 'we', 'they', 'this',
        'that', 'these', 'those', 'my', 'your', 'his', 'her',
        # Auxiliary verbs
        'be', 'am', 'is', 'are', 'was', 'were', 'been', 'have',
        'has', 'had', 'do', 'does', 'did',
        # Common academic words
        'therefore', 'however', 'thus', 'hence', 'moreover',
        'furthermore', 'nevertheless',
        # Numbers written
        'one', 'two', 'three', 'first', 'second', 'third',
        # Other common words
        'where', 'when', 'how', 'what', 'which', 'who',
        'whom', 'whose', 'there', 'here', 'just', 'only',
        # Symbols and special characters
        '#', '@', '/', '*', '+', '-', '=', '$', '%'
    },
    'fr': {
        # Articles
        'le', 'la', 'les', 'un', 'une', 'des',
        # Prepositions
        'à', 'de', 'dans', 'sur', 'en', 'par', 'pour', 'avec',
        'sans', 'sous', 'entre', 'derrière', 'chez', 'avant',
        # Conjunctions
        'et', 'ou', 'mais', 'donc', 'car', 'ni', 'or',
        # Pronouns
        'je', 'tu', 'il', 'elle', 'nous', 'vous', 'ils',
        'elles', 'ce', 'cette', 'ces', 'celui', 'celle',
        # Auxiliary verbs
        'être', 'avoir', 'faire',
        # Academic words
        'donc', 'cependant', 'néanmoins', 'ainsi', 'toutefois',
        'pourtant', 'alors',
        # Numbers
        'un', 'deux', 'trois', 'premier', 'première', 'second',
        # Other common words
        'où', 'quand', 'comment', 'que', 'qui', 'quoi',
        'quel', 'quelle', 'plus', 'moins',
        # Symbols
        '#', '@', '/', '*', '+', '-', '=', '$', '%'
    }
}

##############################################################################################################
def get_stopwords(lang_code):
    """
    Obtiene el conjunto de stopwords para un idioma específico.
    Combina las stopwords de spaCy con las personalizadas.
    """
    try:
        nlp = spacy.load(f'{lang_code}_core_news_sm')
        spacy_stopwords = nlp.Defaults.stop_words
        custom_stopwords = CUSTOM_STOPWORDS.get(lang_code, set())
        return spacy_stopwords.union(custom_stopwords)
    except:
        return CUSTOM_STOPWORDS.get(lang_code, set())


def perform_semantic_analysis(text, nlp, lang_code):
    """
    Realiza el análisis semántico completo del texto.
    Args:
        text: Texto a analizar
        nlp: Modelo de spaCy
        lang_code: Código del idioma
    Returns:
        dict: Resultados del análisis
    """
    
    logger.info(f"Starting semantic analysis for language: {lang_code}")
    try:
        doc = nlp(text)
        key_concepts = identify_key_concepts(doc)
        concept_graph = create_concept_graph(doc, key_concepts)
        concept_graph_fig = visualize_concept_graph(concept_graph, lang_code)
        entities = extract_entities(doc, lang_code)
        entity_graph = create_entity_graph(entities)
        entity_graph_fig = visualize_entity_graph(entity_graph, lang_code)

        # Convertir figuras a bytes
        concept_graph_bytes = fig_to_bytes(concept_graph_fig)
        entity_graph_bytes = fig_to_bytes(entity_graph_fig)

        logger.info("Semantic analysis completed successfully")
        return {
            'key_concepts': key_concepts,
            'concept_graph': concept_graph_bytes,
            'entities': entities,
            'entity_graph': entity_graph_bytes
        }
    except Exception as e:
        logger.error(f"Error in perform_semantic_analysis: {str(e)}")
        raise


def fig_to_bytes(fig):
    buf = io.BytesIO()
    fig.savefig(buf, format='png')
    buf.seek(0)
    return buf.getvalue()


def fig_to_html(fig):
    buf = io.BytesIO()
    fig.savefig(buf, format='png')
    buf.seek(0)
    img_str = base64.b64encode(buf.getvalue()).decode()
    return f'<img src="data:image/png;base64,{img_str}" />'



def identify_key_concepts(doc, min_freq=2, min_length=3):
    """
    Identifica conceptos clave en el texto.
    Args:
        doc: Documento procesado por spaCy
        min_freq: Frecuencia mínima para considerar un concepto
        min_length: Longitud mínima de palabra para considerar
    Returns:
        list: Lista de tuplas (concepto, frecuencia)
    """
    try:
        # Obtener stopwords para el idioma
        stopwords = get_stopwords(doc.lang_)
        
        # Contar frecuencias de palabras
        word_freq = Counter()
        
        for token in doc:
            if (token.lemma_.lower() not in stopwords and
                len(token.lemma_) >= min_length and
                token.is_alpha and
                not token.is_punct and
                not token.like_num):
                
                word_freq[token.lemma_.lower()] += 1
        
        # Filtrar por frecuencia mínima
        concepts = [(word, freq) for word, freq in word_freq.items() 
                   if freq >= min_freq]
        
        # Ordenar por frecuencia
        concepts.sort(key=lambda x: x[1], reverse=True)
        
        return concepts[:10]  # Retornar los 10 conceptos más frecuentes
        
    except Exception as e:
        logger.error(f"Error en identify_key_concepts: {str(e)}")
        return []  # Retornar lista vacía en caso de error


def create_concept_graph(doc, key_concepts):
    """
    Crea un grafo de relaciones entre conceptos.
    Args:
        doc: Documento procesado por spaCy
        key_concepts: Lista de tuplas (concepto, frecuencia)
    Returns:
        nx.Graph: Grafo de conceptos
    """
    try:
        G = nx.Graph()
        
        # Crear un conjunto de conceptos clave para búsqueda rápida
        concept_words = {concept[0].lower() for concept in key_concepts}
        
        # Añadir nodos al grafo
        for concept, freq in key_concepts:
            G.add_node(concept.lower(), weight=freq)
        
        # Analizar cada oración
        for sent in doc.sents:
            # Obtener conceptos en la oración actual
            current_concepts = []
            for token in sent:
                if token.lemma_.lower() in concept_words:
                    current_concepts.append(token.lemma_.lower())
            
            # Crear conexiones entre conceptos en la misma oración
            for i, concept1 in enumerate(current_concepts):
                for concept2 in current_concepts[i+1:]:
                    if concept1 != concept2:
                        # Si ya existe la arista, incrementar el peso
                        if G.has_edge(concept1, concept2):
                            G[concept1][concept2]['weight'] += 1
                        # Si no existe, crear nueva arista con peso 1
                        else:
                            G.add_edge(concept1, concept2, weight=1)
        
        return G
        
    except Exception as e:
        logger.error(f"Error en create_concept_graph: {str(e)}")
        # Retornar un grafo vacío en caso de error
        return nx.Graph()

def visualize_concept_graph(G, lang_code):
    """
    Visualiza el grafo de conceptos.
    Args:
        G: Grafo de networkx
        lang_code: Código del idioma
    Returns:
        matplotlib.figure.Figure: Figura con el grafo visualizado
    """
    try:
        plt.figure(figsize=(12, 8))
        
        # Calcular el layout del grafo
        pos = nx.spring_layout(G)
        
        # Obtener pesos de nodos y aristas
        node_weights = [G.nodes[node].get('weight', 1) * 500 for node in G.nodes()]
        edge_weights = [G[u][v].get('weight', 1) for u, v in G.edges()]
        
        # Dibujar el grafo
        nx.draw_networkx_nodes(G, pos, 
                             node_size=node_weights,
                             node_color='lightblue',
                             alpha=0.6)
        
        nx.draw_networkx_edges(G, pos,
                             width=edge_weights,
                             alpha=0.5,
                             edge_color='gray')
        
        nx.draw_networkx_labels(G, pos,
                              font_size=10,
                              font_weight='bold')
        
        plt.title("Red de conceptos relacionados")
        plt.axis('off')
        
        return plt.gcf()
        
    except Exception as e:
        logger.error(f"Error en visualize_concept_graph: {str(e)}")
        # Retornar una figura vacía en caso de error
        return plt.figure()

def create_entity_graph(entities):
    G = nx.Graph()
    for entity_type, entity_list in entities.items():
        for entity in entity_list:
            G.add_node(entity, type=entity_type)
        for i, entity1 in enumerate(entity_list):
            for entity2 in entity_list[i+1:]:
                G.add_edge(entity1, entity2)
    return G

def visualize_entity_graph(G, lang_code):
    fig, ax = plt.subplots(figsize=(12, 8))
    pos = nx.spring_layout(G)
    for entity_type, color in ENTITY_LABELS[lang_code].items():
        node_list = [node for node, data in G.nodes(data=True) if data['type'] == entity_type]
        nx.draw_networkx_nodes(G, pos, nodelist=node_list, node_color=color, node_size=500, alpha=0.8, ax=ax)
    nx.draw_networkx_edges(G, pos, width=1, alpha=0.5, ax=ax)
    nx.draw_networkx_labels(G, pos, font_size=8, font_weight="bold", ax=ax)
    ax.set_title(f"Relaciones entre Entidades ({lang_code})", fontsize=16)
    ax.axis('off')
    plt.tight_layout()
    return fig


#################################################################################
def create_topic_graph(topics, doc):
    G = nx.Graph()
    for topic in topics:
        G.add_node(topic, weight=doc.text.count(topic))
    for i, topic1 in enumerate(topics):
        for topic2 in topics[i+1:]:
            weight = sum(1 for sent in doc.sents if topic1 in sent.text and topic2 in sent.text)
            if weight > 0:
                G.add_edge(topic1, topic2, weight=weight)
    return G

def visualize_topic_graph(G, lang_code):
    fig, ax = plt.subplots(figsize=(12, 8))
    pos = nx.spring_layout(G)
    node_sizes = [G.nodes[node]['weight'] * 100 for node in G.nodes()]
    nx.draw_networkx_nodes(G, pos, node_size=node_sizes, node_color='lightgreen', alpha=0.8, ax=ax)
    nx.draw_networkx_labels(G, pos, font_size=10, font_weight="bold", ax=ax)
    edge_weights = [G[u][v]['weight'] for u, v in G.edges()]
    nx.draw_networkx_edges(G, pos, width=edge_weights, alpha=0.5, ax=ax)
    ax.set_title(f"Relaciones entre Temas ({lang_code})", fontsize=16)
    ax.axis('off')
    plt.tight_layout()
    return fig

###########################################################################################
def generate_summary(doc, lang_code):
    sentences = list(doc.sents)
    summary = sentences[:3]  # Toma las primeras 3 oraciones como resumen
    return " ".join([sent.text for sent in summary])

def extract_entities(doc, lang_code):
    entities = defaultdict(list)
    for ent in doc.ents:
        if ent.label_ in ENTITY_LABELS[lang_code]:
            entities[ent.label_].append(ent.text)
    return dict(entities)

def analyze_sentiment(doc, lang_code):
    positive_words = sum(1 for token in doc if token.sentiment > 0)
    negative_words = sum(1 for token in doc if token.sentiment < 0)
    total_words = len(doc)
    if positive_words > negative_words:
        return "Positivo"
    elif negative_words > positive_words:
        return "Negativo"
    else:
        return "Neutral"

def extract_topics(doc, lang_code):
    vectorizer = TfidfVectorizer(stop_words='english', max_features=5)
    tfidf_matrix = vectorizer.fit_transform([doc.text])
    feature_names = vectorizer.get_feature_names_out()
    return list(feature_names)

# Asegúrate de que todas las funciones necesarias estén exportadas
__all__ = [
    'perform_semantic_analysis',
    'identify_key_concepts',
    'create_concept_graph',
    'visualize_concept_graph',
    'create_entity_graph',
    'visualize_entity_graph',
    'generate_summary',
    'extract_entities',
    'analyze_sentiment',
    'create_topic_graph',
    'visualize_topic_graph',
    'extract_topics',
    'ENTITY_LABELS',
    'POS_COLORS',
    'POS_TRANSLATIONS'
]