File size: 35,539 Bytes
c58df45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
##############
#########student_activities.py
import streamlit as st
import re
import io
from io import BytesIO
import pandas as pd
import numpy as np
import time
import matplotlib.pyplot as plt
from datetime import datetime
from spacy import displacy
import random
import base64
import seaborn as sns
import logging

logger = logging.getLogger(__name__)

###################################################################################

def display_student_progress(username, lang_code, t, student_data):
    if not student_data or len(student_data['entries']) == 0:
        st.warning(t.get("no_data_warning", "No se encontraron datos para este estudiante."))
        st.info(t.get("try_analysis", "Intenta realizar algunos análisis de texto primero."))
        return

    st.title(f"{t.get('progress_of', 'Progreso de')} {username}")

    with st.expander(t.get("activities_summary", "Resumen de Actividades y Progreso"), expanded=True):
        total_entries = len(student_data['entries'])
        st.write(f"{t.get('total_analyses', 'Total de análisis realizados')}: {total_entries}")

        # Gráfico de tipos de análisis
        analysis_types = [entry['analysis_type'] for entry in student_data['entries']]
        analysis_counts = pd.Series(analysis_types).value_counts()

        fig, ax = plt.subplots(figsize=(8, 4))
        analysis_counts.plot(kind='bar', ax=ax)
        ax.set_title(t.get("analysis_types_chart", "Tipos de análisis realizados"))
        ax.set_xlabel(t.get("analysis_type", "Tipo de análisis"))
        ax.set_ylabel(t.get("count", "Cantidad"))
        st.pyplot(fig)

    # Histórico de Análisis Morfosintácticos
    with st.expander(t.get("morphosyntax_history", "Histórico de Análisis Morfosintácticos")):
        morphosyntax_entries = [entry for entry in username['entries'] if entry['analysis_type'] == 'morphosyntax']
        if not morphosyntax_entries:
            st.warning("No se encontraron análisis morfosintácticos.")
        for entry in morphosyntax_entries:
            st.subheader(f"{t.get('analysis_of', 'Análisis del')} {entry['timestamp']}")
            if 'arc_diagrams' in entry and entry['arc_diagrams']:
                try:
                    st.write(entry['arc_diagrams'][0], unsafe_allow_html=True)
                except Exception as e:
                    logger.error(f"Error al mostrar diagrama de arco: {str(e)}")
                    st.error("Error al mostrar el diagrama de arco.")
            else:
                st.write(t.get("no_arc_diagram", "No se encontró diagrama de arco para este análisis."))

    # Histórico de Análisis Semánticos
    with st.expander(t.get("semantic_history", "Histórico de Análisis Semánticos")):
        semantic_entries = [entry for entry in username['entries'] if entry['analysis_type'] == 'semantic']
        if not semantic_entries:
            st.warning("No se encontraron análisis semánticos.")
        for entry in semantic_entries:
            st.subheader(f"{t.get('analysis_of', 'Análisis del')} {entry['timestamp']}")
            if 'key_concepts' in entry:
                st.write(t.get("key_concepts", "Conceptos clave:"))
                concepts_str = " | ".join([f"{concept} ({frequency:.2f})" for concept, frequency in entry['key_concepts']])
                st.markdown(f"<div style='background-color: #f0f2f6; padding: 10px; border-radius: 5px;'>{concepts_str}</div>", unsafe_allow_html=True)
            if 'graph' in entry:
                try:
                    img_bytes = base64.b64decode(entry['graph'])
                    st.image(img_bytes, caption=t.get("conceptual_relations_graph", "Gráfico de relaciones conceptuales"))
                except Exception as e:
                    logger.error(f"Error al mostrar gráfico semántico: {str(e)}")
                    st.error(t.get("graph_display_error", f"No se pudo mostrar el gráfico: {str(e)}"))

    # Histórico de Análisis Discursivos
    with st.expander(t.get("discourse_history", "Histórico de Análisis Discursivos")):
        discourse_entries = [entry for entry in username['entries'] if entry['analysis_type'] == 'discourse']
        for entry in discourse_entries:
            st.subheader(f"{t.get('analysis_of', 'Análisis del')} {entry['timestamp']}")
            for i in [1, 2]:
                if f'key_concepts{i}' in entry:
                    st.write(f"{t.get('key_concepts', 'Conceptos clave')} {t.get('document', 'documento')} {i}:")
                    concepts_str = " | ".join([f"{concept} ({frequency:.2f})" for concept, frequency in entry[f'key_concepts{i}']])
                    st.markdown(f"<div style='background-color: #f0f2f6; padding: 10px; border-radius: 5px;'>{concepts_str}</div>", unsafe_allow_html=True)
            try:
                if 'combined_graph' in entry and entry['combined_graph']:
                    img_bytes = base64.b64decode(entry['combined_graph'])
                    st.image(img_bytes, caption=t.get("combined_graph", "Gráfico combinado"))
                elif 'graph1' in entry and 'graph2' in entry:
                    col1, col2 = st.columns(2)
                    with col1:
                        if entry['graph1']:
                            img_bytes1 = base64.b64decode(entry['graph1'])
                            st.image(img_bytes1, caption=t.get("graph_doc1", "Gráfico documento 1"))
                    with col2:
                        if entry['graph2']:
                            img_bytes2 = base64.b64decode(entry['graph2'])
                            st.image(img_bytes2, caption=t.get("graph_doc2", "Gráfico documento 2"))
            except Exception as e:
                st.error(t.get("graph_display_error", f"No se pudieron mostrar los gráficos: {str(e)}"))

    # Histórico de Conversaciones con el ChatBot
    with st.expander(t.get("chatbot_history", "Histórico de Conversaciones con el ChatBot")):
        if 'chat_history' in username and username['chat_history']:
            for i, chat in enumerate(username['chat_history']):
                st.subheader(f"{t.get('conversation', 'Conversación')} {i+1} - {chat['timestamp']}")
                for message in chat['messages']:
                    if message['role'] == 'user':
                        st.write(f"{t.get('user', 'Usuario')}: {message['content']}")
                    else:
                        st.write(f"{t.get('assistant', 'Asistente')}: {message['content']}")
                st.write("---")
        else:
            st.write(t.get("no_chat_history", "No se encontraron conversaciones con el ChatBot."))

    # Añadir logs para depuración
    if st.checkbox(t.get("show_debug_data", "Mostrar datos de depuración")):
        st.write(t.get("student_debug_data", "Datos del estudiante (para depuración):"))
        st.json(username)

        # Mostrar conteo de tipos de análisis
        analysis_types = [entry['analysis_type'] for entry in username['entries']]
        type_counts = {t: analysis_types.count(t) for t in set(analysis_types)}
        st.write("Conteo de tipos de análisis:")
        st.write(type_counts)




'''

##########versión 25-9-2024---02:30 ################ OK (username)####################



def display_student_progress(username, lang_code, t, student_data):

    st.title(f"{t.get('progress_of', 'Progreso de')} {username}")



    if not student_data or len(student_data.get('entries', [])) == 0:

        st.warning(t.get("no_data_warning", "No se encontraron datos para este estudiante."))

        st.info(t.get("try_analysis", "Intenta realizar algunos análisis de texto primero."))

        return



    with st.expander(t.get("activities_summary", "Resumen de Actividades"), expanded=True):

        total_entries = len(student_data['entries'])

        st.write(f"{t.get('total_analyses', 'Total de análisis realizados')}: {total_entries}")



        # Gráfico de tipos de análisis

        analysis_types = [entry['analysis_type'] for entry in student_data['entries']]

        analysis_counts = pd.Series(analysis_types).value_counts()

        fig, ax = plt.subplots()

        analysis_counts.plot(kind='bar', ax=ax)

        ax.set_title(t.get("analysis_types_chart", "Tipos de análisis realizados"))

        ax.set_xlabel(t.get("analysis_type", "Tipo de análisis"))

        ax.set_ylabel(t.get("count", "Cantidad"))

        st.pyplot(fig)



    # Mostrar los últimos análisis morfosintácticos

    with st.expander(t.get("morphosyntax_history", "Histórico de Análisis Morfosintácticos")):

        morphosyntax_entries = [entry for entry in student_data['entries'] if entry['analysis_type'] == 'morphosyntax']

        for entry in morphosyntax_entries[:5]:  # Mostrar los últimos 5

            st.subheader(f"{t.get('analysis_of', 'Análisis del')} {entry['timestamp']}")

            if 'arc_diagrams' in entry and entry['arc_diagrams']:

                st.components.v1.html(entry['arc_diagrams'][0], height=300, scrolling=True)



    # Añadir secciones similares para análisis semánticos y discursivos si es necesario



    # Mostrar el historial de chat

    with st.expander(t.get("chat_history", "Historial de Chat")):

        if 'chat_history' in student_data:

            for chat in student_data['chat_history'][:5]:  # Mostrar las últimas 5 conversaciones

                st.subheader(f"{t.get('chat_from', 'Chat del')} {chat['timestamp']}")

                for message in chat['messages']:

                    st.write(f"{message['role'].capitalize()}: {message['content']}")

                st.write("---")

        else:

            st.write(t.get("no_chat_history", "No hay historial de chat disponible."))





##########versión 24-9-2024---17:30 ################ OK FROM--V2 de def get_student_data(username)####################



def display_student_progress(username, lang_code, t, student_data):

    if not student_data or len(student_data['entries']) == 0:

        st.warning(t.get("no_data_warning", "No se encontraron datos para este estudiante."))

        st.info(t.get("try_analysis", "Intenta realizar algunos análisis de texto primero."))

        return



    st.title(f"{t.get('progress_of', 'Progreso de')} {username}")



    with st.expander(t.get("activities_summary", "Resumen de Actividades y Progreso"), expanded=True):

        total_entries = len(student_data['entries'])

        st.write(f"{t.get('total_analyses', 'Total de análisis realizados')}: {total_entries}")



        # Gráfico de tipos de análisis

        analysis_types = [entry['analysis_type'] for entry in student_data['entries']]

        analysis_counts = pd.Series(analysis_types).value_counts()



        fig, ax = plt.subplots(figsize=(8, 4))

        analysis_counts.plot(kind='bar', ax=ax)

        ax.set_title(t.get("analysis_types_chart", "Tipos de análisis realizados"))

        ax.set_xlabel(t.get("analysis_type", "Tipo de análisis"))

        ax.set_ylabel(t.get("count", "Cantidad"))

        st.pyplot(fig)



    # Histórico de Análisis Morfosintácticos

    with st.expander(t.get("morphosyntax_history", "Histórico de Análisis Morfosintácticos")):

        morphosyntax_entries = [entry for entry in student_data['entries'] if entry['analysis_type'] == 'morphosyntax']

        if not morphosyntax_entries:

            st.warning("No se encontraron análisis morfosintácticos.")

        for entry in morphosyntax_entries:

            st.subheader(f"{t.get('analysis_of', 'Análisis del')} {entry['timestamp']}")

            if 'arc_diagrams' in entry and entry['arc_diagrams']:

                try:

                    st.write(entry['arc_diagrams'][0], unsafe_allow_html=True)

                except Exception as e:

                    logger.error(f"Error al mostrar diagrama de arco: {str(e)}")

                    st.error("Error al mostrar el diagrama de arco.")

            else:

                st.write(t.get("no_arc_diagram", "No se encontró diagrama de arco para este análisis."))



    # Histórico de Análisis Semánticos

    with st.expander(t.get("semantic_history", "Histórico de Análisis Semánticos")):

        semantic_entries = [entry for entry in student_data['entries'] if entry['analysis_type'] == 'semantic']

        if not semantic_entries:

            st.warning("No se encontraron análisis semánticos.")

        for entry in semantic_entries:

            st.subheader(f"{t.get('analysis_of', 'Análisis del')} {entry['timestamp']}")

            if 'key_concepts' in entry:

                st.write(t.get("key_concepts", "Conceptos clave:"))

                concepts_str = " | ".join([f"{concept} ({frequency:.2f})" for concept, frequency in entry['key_concepts']])

                st.markdown(f"<div style='background-color: #f0f2f6; padding: 10px; border-radius: 5px;'>{concepts_str}</div>", unsafe_allow_html=True)

            if 'graph' in entry:

                try:

                    img_bytes = base64.b64decode(entry['graph'])

                    st.image(img_bytes, caption=t.get("conceptual_relations_graph", "Gráfico de relaciones conceptuales"))

                except Exception as e:

                    logger.error(f"Error al mostrar gráfico semántico: {str(e)}")

                    st.error(t.get("graph_display_error", f"No se pudo mostrar el gráfico: {str(e)}"))



    # Histórico de Análisis Discursivos

    with st.expander(t.get("discourse_history", "Histórico de Análisis Discursivos")):

        discourse_entries = [entry for entry in student_data['entries'] if entry['analysis_type'] == 'discourse']

        for entry in discourse_entries:

            st.subheader(f"{t.get('analysis_of', 'Análisis del')} {entry['timestamp']}")

            for i in [1, 2]:

                if f'key_concepts{i}' in entry:

                    st.write(f"{t.get('key_concepts', 'Conceptos clave')} {t.get('document', 'documento')} {i}:")

                    concepts_str = " | ".join([f"{concept} ({frequency:.2f})" for concept, frequency in entry[f'key_concepts{i}']])

                    st.markdown(f"<div style='background-color: #f0f2f6; padding: 10px; border-radius: 5px;'>{concepts_str}</div>", unsafe_allow_html=True)

            try:

                if 'combined_graph' in entry and entry['combined_graph']:

                    img_bytes = base64.b64decode(entry['combined_graph'])

                    st.image(img_bytes, caption=t.get("combined_graph", "Gráfico combinado"))

                elif 'graph1' in entry and 'graph2' in entry:

                    col1, col2 = st.columns(2)

                    with col1:

                        if entry['graph1']:

                            img_bytes1 = base64.b64decode(entry['graph1'])

                            st.image(img_bytes1, caption=t.get("graph_doc1", "Gráfico documento 1"))

                    with col2:

                        if entry['graph2']:

                            img_bytes2 = base64.b64decode(entry['graph2'])

                            st.image(img_bytes2, caption=t.get("graph_doc2", "Gráfico documento 2"))

            except Exception as e:

                st.error(t.get("graph_display_error", f"No se pudieron mostrar los gráficos: {str(e)}"))



    # Histórico de Conversaciones con el ChatBot

    with st.expander(t.get("chatbot_history", "Histórico de Conversaciones con el ChatBot")):

        if 'chat_history' in student_data and student_data['chat_history']:

            for i, chat in enumerate(student_data['chat_history']):

                st.subheader(f"{t.get('conversation', 'Conversación')} {i+1} - {chat['timestamp']}")

                for message in chat['messages']:

                    if message['role'] == 'user':

                        st.write(f"{t.get('user', 'Usuario')}: {message['content']}")

                    else:

                        st.write(f"{t.get('assistant', 'Asistente')}: {message['content']}")

                st.write("---")

        else:

            st.write(t.get("no_chat_history", "No se encontraron conversaciones con el ChatBot."))



    # Añadir logs para depuración

    if st.checkbox(t.get("show_debug_data", "Mostrar datos de depuración")):

        st.write(t.get("student_debug_data", "Datos del estudiante (para depuración):"))

        st.json(student_data)



        # Mostrar conteo de tipos de análisis

        analysis_types = [entry['analysis_type'] for entry in student_data['entries']]

        type_counts = {t: analysis_types.count(t) for t in set(analysis_types)}

        st.write("Conteo de tipos de análisis:")

        st.write(type_counts)





#############################--- Update 16:00 24-9 #########################################

def display_student_progress(username, lang_code, t, student_data):

    try:

        st.subheader(t.get('student_activities', 'Student Activitie'))



        if not student_data or all(len(student_data.get(key, [])) == 0 for key in ['morphosyntax_analyses', 'semantic_analyses', 'discourse_analyses']):

            st.warning(t.get('no_data_warning', 'No analysis data found for this student.'))

            return



        # Resumen de actividades

        total_analyses = sum(len(student_data.get(key, [])) for key in ['morphosyntax_analyses', 'semantic_analyses', 'discourse_analyses'])

        st.write(f"{t.get('total_analyses', 'Total analyses performed')}: {total_analyses}")



        # Gráfico de tipos de análisis

        analysis_counts = {

            t.get('morpho_analyses', 'Morphosyntactic Analyses'): len(student_data.get('morphosyntax_analyses', [])),

            t.get('semantic_analyses', 'Semantic Analyses'): len(student_data.get('semantic_analyses', [])),

            t.get('discourse_analyses', 'Discourse Analyses'): len(student_data.get('discourse_analyses', []))

        }

        # Configurar el estilo de seaborn para un aspecto más atractivo

        sns.set_style("whitegrid")



        # Crear una figura más pequeña

        fig, ax = plt.subplots(figsize=(6, 4))



        # Usar colores más atractivos

        colors = ['#ff9999', '#66b3ff', '#99ff99']



        # Crear el gráfico de barras

        bars = ax.bar(analysis_counts.keys(), analysis_counts.values(), color=colors)



        # Añadir etiquetas de valor encima de cada barra

        for bar in bars:

            height = bar.get_height()

            ax.text(bar.get_x() + bar.get_width()/2., height,

                    f'{height}',

                    ha='center', va='bottom')



        # Configurar el título y las etiquetas

        ax.set_title(t.get('analysis_types_chart', 'Types of analyses performed'), fontsize=12)

        ax.set_ylabel(t.get('count', 'Count'), fontsize=10)



        # Rotar las etiquetas del eje x para mejor legibilidad

        plt.xticks(rotation=45, ha='right')



        # Ajustar el diseño para que todo quepa

        plt.tight_layout()



        # Mostrar el gráfico en Streamlit

        st.pyplot(fig)



        # Mostrar los últimos análisis

        for analysis_type in ['morphosyntax_analyses', 'semantic_analyses', 'discourse_analyses']:

            with st.expander(t.get(f'{analysis_type}_expander', f'{analysis_type.capitalize()} History')):

                for analysis in student_data.get(analysis_type, [])[:5]:  # Mostrar los últimos 5

                    st.subheader(f"{t.get('analysis_from', 'Analysis from')} {analysis.get('timestamp', 'N/A')}")

                    if analysis_type == 'morphosyntax_analyses':

                        if 'arc_diagrams' in analysis:

                            st.write(analysis['arc_diagrams'][0], unsafe_allow_html=True)

                    elif analysis_type == 'semantic_analyses':

                        if 'key_concepts' in analysis:

                            st.write(t.get('key_concepts', 'Key concepts'))

                            st.write(", ".join([f"{concept} ({freq:.2f})" for concept, freq in analysis['key_concepts']]))

                        if 'graph' in analysis:

                            st.image(base64.b64decode(analysis['graph']))

                    elif analysis_type == 'discourse_analyses':

                        for i in [1, 2]:

                            if f'key_concepts{i}' in analysis:

                                st.write(f"{t.get('key_concepts', 'Key concepts')} {t.get('document', 'Document')} {i}")

                                st.write(", ".join([f"{concept} ({freq:.2f})" for concept, freq in analysis[f'key_concepts{i}']]))

                        if 'combined_graph' in analysis:

                            st.image(base64.b64decode(analysis['combined_graph']))



        # Mostrar el historial de chat

        with st.expander(t.get('chat_history_expander', 'Chat History')):

            for chat in student_data.get('chat_history', [])[:5]:  # Mostrar las últimas 5 conversaciones

                st.subheader(f"{t.get('chat_from', 'Chat from')} {chat.get('timestamp', 'N/A')}")

                for message in chat.get('messages', []):

                    st.write(f"{message.get('role', 'Unknown').capitalize()}: {message.get('content', 'No content')}")

                st.write("---")



    except Exception as e:

        logger.error(f"Error in display_student_progress: {str(e)}", exc_info=True)

        st.error(t.get('error_loading_progress', 'Error loading student progress. Please try again later.'))























































#####################################################################

def display_student_progress(username, lang_code, t, student_data):

    st.subheader(t['student_progress'])



    if not student_data or all(len(student_data[key]) == 0 for key in ['morphosyntax_analyses', 'semantic_analyses', 'discourse_analyses']):

        st.warning(t['no_data_warning'])

        return



    # Resumen de actividades

    total_analyses = sum(len(student_data[key]) for key in ['morphosyntax_analyses', 'semantic_analyses', 'discourse_analyses'])

    st.write(f"{t['total_analyses']}: {total_analyses}")



    # Gráfico de tipos de análisis

    analysis_counts = {

        t['morpho_analyses']: len(student_data['morphosyntax_analyses']),

        t['semantic_analyses']: len(student_data['semantic_analyses']),

        t['discourse_analyses']: len(student_data['discourse_analyses'])

    }

    fig, ax = plt.subplots()

    ax.bar(analysis_counts.keys(), analysis_counts.values())

    ax.set_title(t['analysis_types_chart'])

    st.pyplot(fig)



    # Mostrar los últimos análisis

    for analysis_type in ['morphosyntax_analyses', 'semantic_analyses', 'discourse_analyses']:

        with st.expander(t[f'{analysis_type}_expander']):

            for analysis in student_data[analysis_type][:5]:  # Mostrar los últimos 5

                st.subheader(f"{t['analysis_from']} {analysis['timestamp']}")

                if analysis_type == 'morphosyntax_analyses':

                    if 'arc_diagrams' in analysis:

                        st.write(analysis['arc_diagrams'][0], unsafe_allow_html=True)

                elif analysis_type == 'semantic_analyses':

                    if 'key_concepts' in analysis:

                        st.write(t['key_concepts'])

                        st.write(", ".join([f"{concept} ({freq:.2f})" for concept, freq in analysis['key_concepts']]))

                    if 'graph' in analysis:

                        st.image(base64.b64decode(analysis['graph']))

                elif analysis_type == 'discourse_analyses':

                    for i in [1, 2]:

                        if f'key_concepts{i}' in analysis:

                            st.write(f"{t['key_concepts']} {t['document']} {i}")

                            st.write(", ".join([f"{concept} ({freq:.2f})" for concept, freq in analysis[f'key_concepts{i}']]))

                    if 'combined_graph' in analysis:

                        st.image(base64.b64decode(analysis['combined_graph']))



    # Mostrar el historial de chat

    with st.expander(t['chat_history_expander']):

        for chat in student_data['chat_history'][:5]:  # Mostrar las últimas 5 conversaciones

            st.subheader(f"{t['chat_from']} {chat['timestamp']}")

            for message in chat['messages']:

                st.write(f"{message['role'].capitalize()}: {message['content']}")

            st.write("---")







def display_student_progress(username, lang_code, t, student_data):

    st.subheader(t['student_activities'])



    if not student_data or all(len(student_data[key]) == 0 for key in ['morphosyntax_analyses', 'semantic_analyses', 'discourse_analyses']):

        st.warning(t['no_data_warning'])

        return



    # Resumen de actividades

    total_analyses = sum(len(student_data[key]) for key in ['morphosyntax_analyses', 'semantic_analyses', 'discourse_analyses'])

    st.write(f"{t['total_analyses']}: {total_analyses}")



    # Gráfico de tipos de análisis

    analysis_counts = {

        t['morphological_analysis']: len(student_data['morphosyntax_analyses']),

        t['semantic_analyses']: len(student_data['semantic_analyses']),

        t['discourse_analyses']: len(student_data['discourse_analyses'])

    }

    fig, ax = plt.subplots()

    ax.bar(analysis_counts.keys(), analysis_counts.values())

    ax.set_title(t['analysis_types_chart'])

    st.pyplot(fig)



    # Mostrar los últimos análisis

    for analysis_type in ['morphosyntax_analyses', 'semantic_analyses', 'discourse_analyses']:

        with st.expander(t[f'{analysis_type}_expander']):

            for analysis in student_data[analysis_type][:5]:  # Mostrar los últimos 5

                st.subheader(f"{t['analysis_from']} {analysis['timestamp']}")

                if analysis_type == 'morphosyntax_analyses':

                    if 'arc_diagrams' in analysis:

                        st.write(analysis['arc_diagrams'][0], unsafe_allow_html=True)

                elif analysis_type == 'semantic_analyses':

                    if 'key_concepts' in analysis:

                        st.write(t['key_concepts'])

                        st.write(", ".join([f"{concept} ({freq:.2f})" for concept, freq in analysis['key_concepts']]))

                    if 'graph' in analysis:

                        st.image(base64.b64decode(analysis['graph']))

                elif analysis_type == 'discourse_analyses':

                    for i in [1, 2]:

                        if f'key_concepts{i}' in analysis:

                            st.write(f"{t['key_concepts']} {t['document']} {i}")

                            st.write(", ".join([f"{concept} ({freq:.2f})" for concept, freq in analysis[f'key_concepts{i}']]))

                    if 'combined_graph' in analysis:

                        st.image(base64.b64decode(analysis['combined_graph']))



    # Mostrar el historial de chat

    with st.expander(t['chat_history_expander']):

        for chat in student_data['chat_history'][:5]:  # Mostrar las últimas 5 conversaciones

            st.subheader(f"{t['chat_from']} {chat['timestamp']}")

            for message in chat['messages']:

                st.write(f"{message['role'].capitalize()}: {message['content']}")

            st.write("---")









def display_student_progress(username, lang_code, t, student_data):

    st.subheader(t['student_activities'])



    if not student_data or all(len(student_data[key]) == 0 for key in ['morphosyntax_analyses', 'semantic_analyses', 'discourse_analyses']):

        st.warning(t['no_data_warning'])

        return



    # Resumen de actividades

    total_analyses = sum(len(student_data[key]) for key in ['morphosyntax_analyses', 'semantic_analyses', 'discourse_analyses'])

    st.write(f"{t['total_analyses']}: {total_analyses}")



    # Gráfico de tipos de análisis

    analysis_counts = {

        t['morphological_analysis']: len(student_data['morphosyntax_analyses']),

        t['semantic_analyses']: len(student_data['semantic_analyses']),

        t['discourse_analyses']: len(student_data['discourse_analyses'])

    }

    fig, ax = plt.subplots()

    ax.bar(analysis_counts.keys(), analysis_counts.values())

    ax.set_title(t['analysis_types_chart'])

    st.pyplot(fig)



    # Mostrar los últimos análisis

    for analysis_type in ['morphosyntax_analyses', 'semantic_analyses', 'discourse_analyses']:

        with st.expander(t[f'{analysis_type}_expander']):

            for analysis in student_data[analysis_type][:5]:  # Mostrar los últimos 5

                st.subheader(f"{t['analysis_from']} {analysis['timestamp']}")

                if analysis_type == 'morphosyntax_analyses':

                    if 'arc_diagrams' in analysis:

                        st.write(analysis['arc_diagrams'][0], unsafe_allow_html=True)

                elif analysis_type == 'semantic_analyses':

                    if 'key_concepts' in analysis:

                        st.write(t['key_concepts'])

                        st.write(", ".join([f"{concept} ({freq:.2f})" for concept, freq in analysis['key_concepts']]))

                    if 'graph' in analysis:

                        st.image(base64.b64decode(analysis['graph']))

                elif analysis_type == 'discourse_analyses':

                    for i in [1, 2]:

                        if f'key_concepts{i}' in analysis:

                            st.write(f"{t['key_concepts']} {t['document']} {i}")

                            st.write(", ".join([f"{concept} ({freq:.2f})" for concept, freq in analysis[f'key_concepts{i}']]))

                    if 'combined_graph' in analysis:

                        st.image(base64.b64decode(analysis['combined_graph']))



    # Mostrar el historial de chat

    with st.expander(t['chat_history_expander']):

        for chat in student_data['chat_history'][:5]:  # Mostrar las últimas 5 conversaciones

            st.subheader(f"{t['chat_from']} {chat['timestamp']}")

            for message in chat['messages']:

                st.write(f"{message['role'].capitalize()}: {message['content']}")

            st.write("---")









def display_student_progress(username, lang_code, t):

    st.subheader(t['student_activities'])

    st.write(f"{t['activities_message']} {username}")



    # Aquí puedes agregar más contenido estático o placeholder

    st.info(t['activities_placeholder'])



    # Si necesitas mostrar algún dato, puedes usar datos de ejemplo o placeholders

    col1, col2, col3 = st.columns(3)

    col1.metric(t['morpho_analyses'], "5")  # Ejemplo de dato

    col2.metric(t['semantic_analyses'], "3")  # Ejemplo de dato

    col3.metric(t['discourse_analyses'], "2")  # Ejemplo de dato







def display_student_progress(username, lang_code, t):

    st.title(f"Actividades de {username}")



    # Obtener todos los datos del estudiante

    student_data = get_student_data(username)



    if not student_data or len(student_data.get('entries', [])) == 0:

        st.warning("No se encontraron datos de análisis para este estudiante.")

        st.info("Intenta realizar algunos análisis de texto primero.")

        return



    # Resumen de actividades

    with st.expander("Resumen de Actividades", expanded=True):

        total_entries = len(student_data['entries'])

        st.write(f"Total de análisis realizados: {total_entries}")



        # Gráfico de tipos de análisis

        analysis_types = [entry['analysis_type'] for entry in student_data['entries']]

        analysis_counts = pd.Series(analysis_types).value_counts()

        fig, ax = plt.subplots()

        analysis_counts.plot(kind='bar', ax=ax)

        ax.set_title("Tipos de análisis realizados")

        ax.set_xlabel("Tipo de análisis")

        ax.set_ylabel("Cantidad")

        st.pyplot(fig)



    # Histórico de Análisis Morfosintácticos

    with st.expander("Histórico de Análisis Morfosintácticos"):

        morpho_analyses = [entry for entry in student_data['entries'] if entry['analysis_type'] == 'morphosyntax']

        for analysis in morpho_analyses[:5]:  # Mostrar los últimos 5

            st.subheader(f"Análisis del {analysis['timestamp']}")

            if 'arc_diagrams' in analysis:

                st.write(analysis['arc_diagrams'][0], unsafe_allow_html=True)



    # Histórico de Análisis Semánticos

    with st.expander("Histórico de Análisis Semánticos"):

        semantic_analyses = [entry for entry in student_data['entries'] if entry['analysis_type'] == 'semantic']

        for analysis in semantic_analyses[:5]:  # Mostrar los últimos 5

            st.subheader(f"Análisis del {analysis['timestamp']}")

            if 'key_concepts' in analysis:

                concepts_str = " | ".join([f"{concept} ({frequency:.2f})" for concept, frequency in analysis['key_concepts']])

                st.markdown(f"<div style='background-color: #f0f2f6; padding: 10px; border-radius: 5px;'>{concepts_str}</div>", unsafe_allow_html=True)

            if 'graph' in analysis:

                try:

                    img_bytes = base64.b64decode(analysis['graph'])

                    st.image(img_bytes, caption="Gráfico de relaciones conceptuales")

                except Exception as e:

                    st.error(f"No se pudo mostrar el gráfico: {str(e)}")



    # Histórico de Análisis Discursivos

    with st.expander("Histórico de Análisis Discursivos"):

        discourse_analyses = [entry for entry in student_data['entries'] if entry['analysis_type'] == 'discourse']

        for analysis in discourse_analyses[:5]:  # Mostrar los últimos 5

            st.subheader(f"Análisis del {analysis['timestamp']}")

            for i in [1, 2]:

                if f'key_concepts{i}' in analysis:

                    concepts_str = " | ".join([f"{concept} ({frequency:.2f})" for concept, frequency in analysis[f'key_concepts{i}']])

                    st.write(f"Conceptos clave del documento {i}:")

                    st.markdown(f"<div style='background-color: #f0f2f6; padding: 10px; border-radius: 5px;'>{concepts_str}</div>", unsafe_allow_html=True)

            if 'combined_graph' in analysis:

                try:

                    img_bytes = base64.b64decode(analysis['combined_graph'])

                    st.image(img_bytes)

                except Exception as e:

                    st.error(f"No se pudo mostrar el gráfico combinado: {str(e)}")



    # Histórico de Conversaciones con el ChatBot

    with st.expander("Histórico de Conversaciones con el ChatBot"):

        if 'chat_history' in student_data:

            for i, chat in enumerate(student_data['chat_history'][:5]):  # Mostrar las últimas 5 conversaciones

                st.subheader(f"Conversación {i+1} - {chat['timestamp']}")

                for message in chat['messages']:

                    st.write(f"{message['role'].capitalize()}: {message['content']}")

                st.write("---")

        else:

            st.write("No se encontraron conversaciones con el ChatBot.")



    # Opción para mostrar datos de depuración

    if st.checkbox("Mostrar datos de depuración"):

        st.write("Datos del estudiante (para depuración):")

        st.json(student_data)



'''