Spaces:
AIR-Bench
/
Running on CPU Upgrade

File size: 13,869 Bytes
d306dfd
1a22df4
 
5664d71
9f44d20
 
a30a228
9c49811
6f9f649
ec8e2d4
f29af77
ec8e2d4
 
 
 
 
 
 
 
 
 
 
 
9c49811
6925231
649e0fb
 
 
 
 
 
1a22df4
6925231
 
ec8e2d4
6925231
 
9c49811
 
658d5a4
 
 
 
9c49811
 
f03a7b5
 
9c49811
 
 
 
 
 
 
 
 
 
 
 
 
32ebf18
 
9c49811
 
 
 
 
 
32ebf18
9c49811
 
6f9f649
df659d0
 
6f9f649
7845083
6f9f649
bf586e3
2edd122
ec8e2d4
bf586e3
 
df659d0
 
 
 
 
2edd122
6d7eea4
 
7845083
6d7eea4
7845083
6d7eea4
 
 
7845083
 
df659d0
 
 
3bab3e9
ec8e2d4
 
 
6f9f649
ec8e2d4
 
3bab3e9
7845083
9c49811
f30cbcc
6f9f649
7845083
6f9f649
7845083
1a22df4
ec8e2d4
9c49811
 
 
 
 
 
7845083
 
 
3bab3e9
7ca7624
 
 
b80bda9
2edd122
9c49811
 
1a22df4
7845083
 
ec8e2d4
 
9c49811
1a22df4
6f9f649
 
ec8e2d4
6f9f649
ec8e2d4
 
 
 
 
 
 
9c49811
7845083
6f9f649
af8395f
 
 
9c49811
7845083
77ded94
 
 
3bab3e9
 
6f9f649
ec8e2d4
 
 
 
 
 
 
 
 
f30cbcc
6f9f649
 
7845083
ec8e2d4
 
 
 
 
 
 
 
 
f30cbcc
 
5808d8f
ec8e2d4
6f9f649
ec8e2d4
 
 
 
 
 
 
5808d8f
6f9f649
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36c5a0c
 
d00fb74
9f44d20
 
 
4a6f9cd
 
8e1f9af
5664d71
 
 
 
 
 
 
 
ec8e2d4
 
5664d71
 
 
d306dfd
 
 
ec8e2d4
d306dfd
 
 
 
 
 
 
 
 
240d9ce
ec8e2d4
 
 
 
 
 
 
 
4a6f9cd
 
 
 
 
 
 
 
318fc6c
 
 
 
ec8e2d4
 
240d9ce
 
 
ec8e2d4
 
4a6f9cd
9f44d20
 
d306dfd
5664d71
d306dfd
9f44d20
158e42c
240d9ce
ec8e2d4
1a22df4
9f44d20
 
240d9ce
9f44d20
 
ec8e2d4
 
9f44d20
 
 
 
 
240d9ce
 
4a6f9cd
7dac66f
4a6f9cd
ec8e2d4
9f44d20
 
9e747ff
9f44d20
 
240d9ce
9f44d20
 
ec8e2d4
 
4a6f9cd
9d64883
 
4a6f9cd
9002757
 
b80bda9
 
 
649e0fb
 
6f9f649
649e0fb
 
 
7845083
ec8e2d4
 
 
6f9f649
7845083
6f9f649
bf586e3
649e0fb
ec8e2d4
bf586e3
 
 
649e0fb
 
6f9f649
649e0fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32ee53f
 
 
6f9f649
ec8e2d4
 
 
 
 
 
 
 
 
32ee53f
6f9f649
 
 
 
32ee53f
 
ec8e2d4
 
 
 
 
 
 
 
 
 
 
 
32ee53f
 
 
 
 
ec8e2d4
 
 
 
 
 
1a22df4
7845083
6f9f649
ec8e2d4
 
 
 
 
 
 
 
 
7845083
6f9f649
 
7845083
ec8e2d4
 
 
 
 
 
 
 
 
f29af77
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
import hashlib
import json
import re
from datetime import datetime, timezone
from pathlib import Path

import pandas as pd

from src.models import TaskType
from src.benchmarks import LongDocBenchmarks, QABenchmarks
from src.columns import get_default_col_names_and_types, get_fixed_col_names_and_types
from src.envs import (
    API,
    COL_NAME_AVG,
    COL_NAME_IS_ANONYMOUS,
    COL_NAME_RANK,
    COL_NAME_RERANKING_MODEL,
    COL_NAME_RETRIEVAL_MODEL,
    COL_NAME_REVISION,
    COL_NAME_TIMESTAMP,
    LATEST_BENCHMARK_VERSION,
    SEARCH_RESULTS_REPO,
)


def calculate_mean(row):
    if pd.isna(row).any():
        return -1
    else:
        return row.mean()


def remove_html(input_str):
    # Regular expression for finding HTML tags
    clean = re.sub(r"<.*?>", "", input_str)
    return clean


def filter_models(df: pd.DataFrame, reranking_query: list) -> pd.DataFrame:
    if not reranking_query:
        return df
    else:
        return df.loc[df[COL_NAME_RERANKING_MODEL].apply(remove_html).isin(reranking_query)]


def filter_queries(query: str, df: pd.DataFrame) -> pd.DataFrame:
    filtered_df = df.copy()
    final_df = []
    if query != "":
        queries = [q.strip() for q in query.split(";")]
        for _q in queries:
            _q = _q.strip()
            if _q != "":
                temp_filtered_df = search_table(filtered_df, _q)
                if len(temp_filtered_df) > 0:
                    final_df.append(temp_filtered_df)
        if len(final_df) > 0:
            filtered_df = pd.concat(final_df)
            filtered_df = filtered_df.drop_duplicates(
                subset=[
                    COL_NAME_RETRIEVAL_MODEL,
                    COL_NAME_RERANKING_MODEL,
                ]
            )
    return filtered_df


def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
    return df[(df[COL_NAME_RETRIEVAL_MODEL].str.contains(query, case=False))]


def get_default_cols(task: TaskType, version_slug, add_fix_cols: bool = True) -> tuple:
    cols = []
    types = []
    if task == TaskType.qa:
        benchmarks = QABenchmarks[version_slug]
    elif task == TaskType.long_doc:
        benchmarks = LongDocBenchmarks[version_slug]
    else:
        raise NotImplementedError
    cols_list, types_list = get_default_col_names_and_types(benchmarks)
    benchmark_list = [c.value.col_name for c in list(benchmarks.value)]
    for col_name, col_type in zip(cols_list, types_list):
        if col_name not in benchmark_list:
            continue
        cols.append(col_name)
        types.append(col_type)
    if add_fix_cols:
        _cols = []
        _types = []
        fixed_cols, fixed_cols_types = get_fixed_col_names_and_types()
        for col_name, col_type in zip(cols, types):
            if col_name in fixed_cols:
                continue
            _cols.append(col_name)
            _types.append(col_type)
        cols = fixed_cols + _cols
        types = fixed_cols_types + _types
    return cols, types


def select_columns(
    df: pd.DataFrame,
    domain_query: list,
    language_query: list,
    task: TaskType = TaskType.qa,
    reset_ranking: bool = True,
    version_slug: str = None,
) -> pd.DataFrame:
    cols, _ = get_default_cols(task=task, version_slug=version_slug, add_fix_cols=False)
    selected_cols = []
    for c in cols:
        if task == TaskType.qa:
            eval_col = QABenchmarks[version_slug].value[c].value
        elif task == TaskType.long_doc:
            eval_col = LongDocBenchmarks[version_slug].value[c].value
        else:
            raise NotImplementedError
        if eval_col.domain not in domain_query:
            continue
        if eval_col.lang not in language_query:
            continue
        selected_cols.append(c)
    # We use COLS to maintain sorting
    fixed_cols, _ = get_fixed_col_names_and_types()
    filtered_df = df[fixed_cols + selected_cols]
    filtered_df.replace({"": pd.NA}, inplace=True)
    if reset_ranking:
        filtered_df[COL_NAME_AVG] = filtered_df[selected_cols].apply(calculate_mean, axis=1).round(decimals=2)
        filtered_df.sort_values(by=[COL_NAME_AVG], ascending=False, inplace=True)
        filtered_df.reset_index(inplace=True, drop=True)
        filtered_df = reset_rank(filtered_df)

    return filtered_df


def get_safe_name(name: str):
    """Get RFC 1123 compatible safe name"""
    name = name.replace("-", "_")
    return "".join(character.lower() for character in name if (character.isalnum() or character == "_"))


def _update_df_elem(
    task: TaskType,
    version: str,
    source_df: pd.DataFrame,
    domains: list,
    langs: list,
    reranking_query: list,
    query: str,
    show_anonymous: bool,
    reset_ranking: bool = True,
    show_revision_and_timestamp: bool = False,
):
    version_slug = get_safe_name(version)[-4:]
    filtered_df = source_df.copy()
    if not show_anonymous:
        filtered_df = filtered_df[~filtered_df[COL_NAME_IS_ANONYMOUS]]
    filtered_df = filter_models(filtered_df, reranking_query)
    filtered_df = filter_queries(query, filtered_df)
    filtered_df = select_columns(filtered_df, domains, langs, task, reset_ranking, version_slug)
    if not show_revision_and_timestamp:
        filtered_df.drop([COL_NAME_REVISION, COL_NAME_TIMESTAMP], axis=1, inplace=True)
    return filtered_df


def update_doc_df_elem(
    version: str,
    hidden_df: pd.DataFrame,
    domains: list,
    langs: list,
    reranking_query: list,
    query: str,
    show_anonymous: bool,
    show_revision_and_timestamp: bool = False,
    reset_ranking: bool = True,
):
    return _update_df_elem(
        TaskType.long_doc,
        version,
        hidden_df,
        domains,
        langs,
        reranking_query,
        query,
        show_anonymous,
        reset_ranking,
        show_revision_and_timestamp,
    )


def update_metric(
    datastore,
    task: TaskType,
    metric: str,
    domains: list,
    langs: list,
    reranking_model: list,
    query: str,
    show_anonymous: bool = False,
    show_revision_and_timestamp: bool = False,
) -> pd.DataFrame:
    if task == TaskType.qa:
        update_func = update_qa_df_elem
    elif task == TaskType.long_doc:
        update_func = update_doc_df_elem
    else:
        raise NotImplemented
    df_elem = get_leaderboard_df(datastore, task=task, metric=metric)
    version = datastore.version
    return update_func(
        version,
        df_elem,
        domains,
        langs,
        reranking_model,
        query,
        show_anonymous,
        show_revision_and_timestamp,
    )


def upload_file(filepath: str):
    if not filepath.endswith(".zip"):
        print(f"file uploading aborted. wrong file type: {filepath}")
        return filepath
    return filepath


def get_iso_format_timestamp():
    # Get the current timestamp with UTC as the timezone
    current_timestamp = datetime.now(timezone.utc)

    # Remove milliseconds by setting microseconds to zero
    current_timestamp = current_timestamp.replace(microsecond=0)

    # Convert to ISO 8601 format and replace the offset with 'Z'
    iso_format_timestamp = current_timestamp.isoformat().replace("+00:00", "Z")
    filename_friendly_timestamp = current_timestamp.strftime("%Y%m%d%H%M%S")
    return iso_format_timestamp, filename_friendly_timestamp


def calculate_file_md5(file_path):
    md5 = hashlib.md5()

    with open(file_path, "rb") as f:
        while True:
            data = f.read(4096)
            if not data:
                break
            md5.update(data)

    return md5.hexdigest()


def submit_results(
    filepath: str,
    model: str,
    model_url: str,
    reranking_model: str = "",
    reranking_model_url: str = "",
    version: str = LATEST_BENCHMARK_VERSION,
    is_anonymous=False,
):
    if not filepath.endswith(".zip"):
        return styled_error(f"file uploading aborted. wrong file type: {filepath}")

    # validate model
    if not model:
        return styled_error("failed to submit. Model name can not be empty.")

    # validate model url
    if not is_anonymous:
        if not model_url.startswith("https://") and not model_url.startswith("http://"):
            # TODO: retrieve the model page and find the model name on the page
            return styled_error(
                f"failed to submit. Model url must start with `https://` or `http://`. Illegal model url: {model_url}"
            )
        if reranking_model != "NoReranker":
            if not reranking_model_url.startswith("https://") and not reranking_model_url.startswith("http://"):
                return styled_error(
                    f"failed to submit. Model url must start with `https://` or `http://`. Illegal model url: {model_url}"
                )

    # rename the uploaded file
    input_fp = Path(filepath)
    revision = calculate_file_md5(filepath)
    timestamp_config, timestamp_fn = get_iso_format_timestamp()
    output_fn = f"{timestamp_fn}-{revision}.zip"
    input_folder_path = input_fp.parent

    if not reranking_model:
        reranking_model = "NoReranker"

    API.upload_file(
        path_or_fileobj=filepath,
        path_in_repo=f"{version}/{model}/{reranking_model}/{output_fn}",
        repo_id=SEARCH_RESULTS_REPO,
        repo_type="dataset",
        commit_message=f"feat: submit {model} to evaluate",
    )

    output_config_fn = f"{output_fn.removesuffix('.zip')}.json"
    output_config = {
        "model_name": f"{model}",
        "model_url": f"{model_url}",
        "reranker_name": f"{reranking_model}",
        "reranker_url": f"{reranking_model_url}",
        "version": f"{version}",
        "is_anonymous": is_anonymous,
        "revision": f"{revision}",
        "timestamp": f"{timestamp_config}",
    }
    with open(input_folder_path / output_config_fn, "w") as f:
        json.dump(output_config, f, indent=4, ensure_ascii=False)
    API.upload_file(
        path_or_fileobj=input_folder_path / output_config_fn,
        path_in_repo=f"{version}/{model}/{reranking_model}/{output_config_fn}",
        repo_id=SEARCH_RESULTS_REPO,
        repo_type="dataset",
        commit_message=f"feat: submit {model} + {reranking_model} config",
    )
    return styled_message(
        f"Thanks for submission!\n"
        f"Retrieval method: {model}\nReranking model: {reranking_model}\nSubmission revision: {revision}"
    )


def reset_rank(df):
    df[COL_NAME_RANK] = df[COL_NAME_AVG].rank(ascending=False, method="min")
    return df


def get_leaderboard_df(datastore, task: TaskType, metric: str) -> pd.DataFrame:
    """
    Creates a dataframe from all the individual experiment results
    """
    raw_data = datastore.raw_data
    cols = [
        COL_NAME_IS_ANONYMOUS,
    ]
    if task == TaskType.qa:
        benchmarks = QABenchmarks[datastore.slug]
    elif task == TaskType.long_doc:
        benchmarks = LongDocBenchmarks[datastore.slug]
    else:
        raise NotImplementedError
    cols_qa, _ = get_default_col_names_and_types(benchmarks)
    cols += cols_qa
    benchmark_cols = [t.value.col_name for t in list(benchmarks.value)]
    all_data_json = []
    for v in raw_data:
        all_data_json += v.to_dict(task=task.value, metric=metric)
    df = pd.DataFrame.from_records(all_data_json)

    _benchmark_cols = frozenset(benchmark_cols).intersection(frozenset(df.columns.to_list()))

    # calculate the average score for selected benchmarks
    df[COL_NAME_AVG] = df[list(_benchmark_cols)].apply(calculate_mean, axis=1).round(decimals=2)
    df.sort_values(by=[COL_NAME_AVG], ascending=False, inplace=True)
    df.reset_index(inplace=True, drop=True)

    _cols = frozenset(cols).intersection(frozenset(df.columns.to_list()))
    df = df[_cols].round(decimals=2)

    # filter out if any of the benchmarks have not been produced
    df[COL_NAME_RANK] = df[COL_NAME_AVG].rank(ascending=False, method="min")

    # shorten the revision
    df[COL_NAME_REVISION] = df[COL_NAME_REVISION].str[:6]

    # # replace "0" with "-" for average score
    # df[COL_NAME_AVG] = df[COL_NAME_AVG].replace(0, "-")
    return df


def set_listeners(
    task: TaskType,
    target_df,
    source_df,
    search_bar,
    version,
    selected_domains,
    selected_langs,
    selected_rerankings,
    show_anonymous,
    show_revision_and_timestamp,
):
    if task == TaskType.qa:
        update_table_func = update_qa_df_elem
    elif task == TaskType.long_doc:
        update_table_func = update_doc_df_elem
    else:
        raise NotImplementedError
    selector_list = [selected_domains, selected_langs, selected_rerankings, search_bar, show_anonymous]
    search_bar_args = [
        source_df,
        version,
    ] + selector_list
    selector_args = (
        [version, source_df]
        + selector_list
        + [
            show_revision_and_timestamp,
        ]
    )
    # Set search_bar listener
    search_bar.submit(update_table_func, search_bar_args, target_df)

    # Set column-wise listener
    for selector in selector_list:
        selector.change(
            update_table_func,
            selector_args,
            target_df,
            queue=True,
        )


def update_qa_df_elem(
    version: str,
    hidden_df: pd.DataFrame,
    domains: list,
    langs: list,
    reranking_query: list,
    query: str,
    show_anonymous: bool,
    show_revision_and_timestamp: bool = False,
    reset_ranking: bool = True,
):
    return _update_df_elem(
        TaskType.qa,
        version,
        hidden_df,
        domains,
        langs,
        reranking_query,
        query,
        show_anonymous,
        reset_ranking,
        show_revision_and_timestamp,
    )


def styled_error(error):
    return f"<p style='color: red; font-size: 20px; text-align: center;'>{error}</p>"


def styled_message(message):
    return f"<p style='color: green; font-size: 20px; text-align: center;'>{message}</p>"