Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 13,869 Bytes
d306dfd 1a22df4 5664d71 9f44d20 a30a228 9c49811 6f9f649 ec8e2d4 f29af77 ec8e2d4 9c49811 6925231 649e0fb 1a22df4 6925231 ec8e2d4 6925231 9c49811 658d5a4 9c49811 f03a7b5 9c49811 32ebf18 9c49811 32ebf18 9c49811 6f9f649 df659d0 6f9f649 7845083 6f9f649 bf586e3 2edd122 ec8e2d4 bf586e3 df659d0 2edd122 6d7eea4 7845083 6d7eea4 7845083 6d7eea4 7845083 df659d0 3bab3e9 ec8e2d4 6f9f649 ec8e2d4 3bab3e9 7845083 9c49811 f30cbcc 6f9f649 7845083 6f9f649 7845083 1a22df4 ec8e2d4 9c49811 7845083 3bab3e9 7ca7624 b80bda9 2edd122 9c49811 1a22df4 7845083 ec8e2d4 9c49811 1a22df4 6f9f649 ec8e2d4 6f9f649 ec8e2d4 9c49811 7845083 6f9f649 af8395f 9c49811 7845083 77ded94 3bab3e9 6f9f649 ec8e2d4 f30cbcc 6f9f649 7845083 ec8e2d4 f30cbcc 5808d8f ec8e2d4 6f9f649 ec8e2d4 5808d8f 6f9f649 36c5a0c d00fb74 9f44d20 4a6f9cd 8e1f9af 5664d71 ec8e2d4 5664d71 d306dfd ec8e2d4 d306dfd 240d9ce ec8e2d4 4a6f9cd 318fc6c ec8e2d4 240d9ce ec8e2d4 4a6f9cd 9f44d20 d306dfd 5664d71 d306dfd 9f44d20 158e42c 240d9ce ec8e2d4 1a22df4 9f44d20 240d9ce 9f44d20 ec8e2d4 9f44d20 240d9ce 4a6f9cd 7dac66f 4a6f9cd ec8e2d4 9f44d20 9e747ff 9f44d20 240d9ce 9f44d20 ec8e2d4 4a6f9cd 9d64883 4a6f9cd 9002757 b80bda9 649e0fb 6f9f649 649e0fb 7845083 ec8e2d4 6f9f649 7845083 6f9f649 bf586e3 649e0fb ec8e2d4 bf586e3 649e0fb 6f9f649 649e0fb 32ee53f 6f9f649 ec8e2d4 32ee53f 6f9f649 32ee53f ec8e2d4 32ee53f ec8e2d4 1a22df4 7845083 6f9f649 ec8e2d4 7845083 6f9f649 7845083 ec8e2d4 f29af77 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 |
import hashlib
import json
import re
from datetime import datetime, timezone
from pathlib import Path
import pandas as pd
from src.models import TaskType
from src.benchmarks import LongDocBenchmarks, QABenchmarks
from src.columns import get_default_col_names_and_types, get_fixed_col_names_and_types
from src.envs import (
API,
COL_NAME_AVG,
COL_NAME_IS_ANONYMOUS,
COL_NAME_RANK,
COL_NAME_RERANKING_MODEL,
COL_NAME_RETRIEVAL_MODEL,
COL_NAME_REVISION,
COL_NAME_TIMESTAMP,
LATEST_BENCHMARK_VERSION,
SEARCH_RESULTS_REPO,
)
def calculate_mean(row):
if pd.isna(row).any():
return -1
else:
return row.mean()
def remove_html(input_str):
# Regular expression for finding HTML tags
clean = re.sub(r"<.*?>", "", input_str)
return clean
def filter_models(df: pd.DataFrame, reranking_query: list) -> pd.DataFrame:
if not reranking_query:
return df
else:
return df.loc[df[COL_NAME_RERANKING_MODEL].apply(remove_html).isin(reranking_query)]
def filter_queries(query: str, df: pd.DataFrame) -> pd.DataFrame:
filtered_df = df.copy()
final_df = []
if query != "":
queries = [q.strip() for q in query.split(";")]
for _q in queries:
_q = _q.strip()
if _q != "":
temp_filtered_df = search_table(filtered_df, _q)
if len(temp_filtered_df) > 0:
final_df.append(temp_filtered_df)
if len(final_df) > 0:
filtered_df = pd.concat(final_df)
filtered_df = filtered_df.drop_duplicates(
subset=[
COL_NAME_RETRIEVAL_MODEL,
COL_NAME_RERANKING_MODEL,
]
)
return filtered_df
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
return df[(df[COL_NAME_RETRIEVAL_MODEL].str.contains(query, case=False))]
def get_default_cols(task: TaskType, version_slug, add_fix_cols: bool = True) -> tuple:
cols = []
types = []
if task == TaskType.qa:
benchmarks = QABenchmarks[version_slug]
elif task == TaskType.long_doc:
benchmarks = LongDocBenchmarks[version_slug]
else:
raise NotImplementedError
cols_list, types_list = get_default_col_names_and_types(benchmarks)
benchmark_list = [c.value.col_name for c in list(benchmarks.value)]
for col_name, col_type in zip(cols_list, types_list):
if col_name not in benchmark_list:
continue
cols.append(col_name)
types.append(col_type)
if add_fix_cols:
_cols = []
_types = []
fixed_cols, fixed_cols_types = get_fixed_col_names_and_types()
for col_name, col_type in zip(cols, types):
if col_name in fixed_cols:
continue
_cols.append(col_name)
_types.append(col_type)
cols = fixed_cols + _cols
types = fixed_cols_types + _types
return cols, types
def select_columns(
df: pd.DataFrame,
domain_query: list,
language_query: list,
task: TaskType = TaskType.qa,
reset_ranking: bool = True,
version_slug: str = None,
) -> pd.DataFrame:
cols, _ = get_default_cols(task=task, version_slug=version_slug, add_fix_cols=False)
selected_cols = []
for c in cols:
if task == TaskType.qa:
eval_col = QABenchmarks[version_slug].value[c].value
elif task == TaskType.long_doc:
eval_col = LongDocBenchmarks[version_slug].value[c].value
else:
raise NotImplementedError
if eval_col.domain not in domain_query:
continue
if eval_col.lang not in language_query:
continue
selected_cols.append(c)
# We use COLS to maintain sorting
fixed_cols, _ = get_fixed_col_names_and_types()
filtered_df = df[fixed_cols + selected_cols]
filtered_df.replace({"": pd.NA}, inplace=True)
if reset_ranking:
filtered_df[COL_NAME_AVG] = filtered_df[selected_cols].apply(calculate_mean, axis=1).round(decimals=2)
filtered_df.sort_values(by=[COL_NAME_AVG], ascending=False, inplace=True)
filtered_df.reset_index(inplace=True, drop=True)
filtered_df = reset_rank(filtered_df)
return filtered_df
def get_safe_name(name: str):
"""Get RFC 1123 compatible safe name"""
name = name.replace("-", "_")
return "".join(character.lower() for character in name if (character.isalnum() or character == "_"))
def _update_df_elem(
task: TaskType,
version: str,
source_df: pd.DataFrame,
domains: list,
langs: list,
reranking_query: list,
query: str,
show_anonymous: bool,
reset_ranking: bool = True,
show_revision_and_timestamp: bool = False,
):
version_slug = get_safe_name(version)[-4:]
filtered_df = source_df.copy()
if not show_anonymous:
filtered_df = filtered_df[~filtered_df[COL_NAME_IS_ANONYMOUS]]
filtered_df = filter_models(filtered_df, reranking_query)
filtered_df = filter_queries(query, filtered_df)
filtered_df = select_columns(filtered_df, domains, langs, task, reset_ranking, version_slug)
if not show_revision_and_timestamp:
filtered_df.drop([COL_NAME_REVISION, COL_NAME_TIMESTAMP], axis=1, inplace=True)
return filtered_df
def update_doc_df_elem(
version: str,
hidden_df: pd.DataFrame,
domains: list,
langs: list,
reranking_query: list,
query: str,
show_anonymous: bool,
show_revision_and_timestamp: bool = False,
reset_ranking: bool = True,
):
return _update_df_elem(
TaskType.long_doc,
version,
hidden_df,
domains,
langs,
reranking_query,
query,
show_anonymous,
reset_ranking,
show_revision_and_timestamp,
)
def update_metric(
datastore,
task: TaskType,
metric: str,
domains: list,
langs: list,
reranking_model: list,
query: str,
show_anonymous: bool = False,
show_revision_and_timestamp: bool = False,
) -> pd.DataFrame:
if task == TaskType.qa:
update_func = update_qa_df_elem
elif task == TaskType.long_doc:
update_func = update_doc_df_elem
else:
raise NotImplemented
df_elem = get_leaderboard_df(datastore, task=task, metric=metric)
version = datastore.version
return update_func(
version,
df_elem,
domains,
langs,
reranking_model,
query,
show_anonymous,
show_revision_and_timestamp,
)
def upload_file(filepath: str):
if not filepath.endswith(".zip"):
print(f"file uploading aborted. wrong file type: {filepath}")
return filepath
return filepath
def get_iso_format_timestamp():
# Get the current timestamp with UTC as the timezone
current_timestamp = datetime.now(timezone.utc)
# Remove milliseconds by setting microseconds to zero
current_timestamp = current_timestamp.replace(microsecond=0)
# Convert to ISO 8601 format and replace the offset with 'Z'
iso_format_timestamp = current_timestamp.isoformat().replace("+00:00", "Z")
filename_friendly_timestamp = current_timestamp.strftime("%Y%m%d%H%M%S")
return iso_format_timestamp, filename_friendly_timestamp
def calculate_file_md5(file_path):
md5 = hashlib.md5()
with open(file_path, "rb") as f:
while True:
data = f.read(4096)
if not data:
break
md5.update(data)
return md5.hexdigest()
def submit_results(
filepath: str,
model: str,
model_url: str,
reranking_model: str = "",
reranking_model_url: str = "",
version: str = LATEST_BENCHMARK_VERSION,
is_anonymous=False,
):
if not filepath.endswith(".zip"):
return styled_error(f"file uploading aborted. wrong file type: {filepath}")
# validate model
if not model:
return styled_error("failed to submit. Model name can not be empty.")
# validate model url
if not is_anonymous:
if not model_url.startswith("https://") and not model_url.startswith("http://"):
# TODO: retrieve the model page and find the model name on the page
return styled_error(
f"failed to submit. Model url must start with `https://` or `http://`. Illegal model url: {model_url}"
)
if reranking_model != "NoReranker":
if not reranking_model_url.startswith("https://") and not reranking_model_url.startswith("http://"):
return styled_error(
f"failed to submit. Model url must start with `https://` or `http://`. Illegal model url: {model_url}"
)
# rename the uploaded file
input_fp = Path(filepath)
revision = calculate_file_md5(filepath)
timestamp_config, timestamp_fn = get_iso_format_timestamp()
output_fn = f"{timestamp_fn}-{revision}.zip"
input_folder_path = input_fp.parent
if not reranking_model:
reranking_model = "NoReranker"
API.upload_file(
path_or_fileobj=filepath,
path_in_repo=f"{version}/{model}/{reranking_model}/{output_fn}",
repo_id=SEARCH_RESULTS_REPO,
repo_type="dataset",
commit_message=f"feat: submit {model} to evaluate",
)
output_config_fn = f"{output_fn.removesuffix('.zip')}.json"
output_config = {
"model_name": f"{model}",
"model_url": f"{model_url}",
"reranker_name": f"{reranking_model}",
"reranker_url": f"{reranking_model_url}",
"version": f"{version}",
"is_anonymous": is_anonymous,
"revision": f"{revision}",
"timestamp": f"{timestamp_config}",
}
with open(input_folder_path / output_config_fn, "w") as f:
json.dump(output_config, f, indent=4, ensure_ascii=False)
API.upload_file(
path_or_fileobj=input_folder_path / output_config_fn,
path_in_repo=f"{version}/{model}/{reranking_model}/{output_config_fn}",
repo_id=SEARCH_RESULTS_REPO,
repo_type="dataset",
commit_message=f"feat: submit {model} + {reranking_model} config",
)
return styled_message(
f"Thanks for submission!\n"
f"Retrieval method: {model}\nReranking model: {reranking_model}\nSubmission revision: {revision}"
)
def reset_rank(df):
df[COL_NAME_RANK] = df[COL_NAME_AVG].rank(ascending=False, method="min")
return df
def get_leaderboard_df(datastore, task: TaskType, metric: str) -> pd.DataFrame:
"""
Creates a dataframe from all the individual experiment results
"""
raw_data = datastore.raw_data
cols = [
COL_NAME_IS_ANONYMOUS,
]
if task == TaskType.qa:
benchmarks = QABenchmarks[datastore.slug]
elif task == TaskType.long_doc:
benchmarks = LongDocBenchmarks[datastore.slug]
else:
raise NotImplementedError
cols_qa, _ = get_default_col_names_and_types(benchmarks)
cols += cols_qa
benchmark_cols = [t.value.col_name for t in list(benchmarks.value)]
all_data_json = []
for v in raw_data:
all_data_json += v.to_dict(task=task.value, metric=metric)
df = pd.DataFrame.from_records(all_data_json)
_benchmark_cols = frozenset(benchmark_cols).intersection(frozenset(df.columns.to_list()))
# calculate the average score for selected benchmarks
df[COL_NAME_AVG] = df[list(_benchmark_cols)].apply(calculate_mean, axis=1).round(decimals=2)
df.sort_values(by=[COL_NAME_AVG], ascending=False, inplace=True)
df.reset_index(inplace=True, drop=True)
_cols = frozenset(cols).intersection(frozenset(df.columns.to_list()))
df = df[_cols].round(decimals=2)
# filter out if any of the benchmarks have not been produced
df[COL_NAME_RANK] = df[COL_NAME_AVG].rank(ascending=False, method="min")
# shorten the revision
df[COL_NAME_REVISION] = df[COL_NAME_REVISION].str[:6]
# # replace "0" with "-" for average score
# df[COL_NAME_AVG] = df[COL_NAME_AVG].replace(0, "-")
return df
def set_listeners(
task: TaskType,
target_df,
source_df,
search_bar,
version,
selected_domains,
selected_langs,
selected_rerankings,
show_anonymous,
show_revision_and_timestamp,
):
if task == TaskType.qa:
update_table_func = update_qa_df_elem
elif task == TaskType.long_doc:
update_table_func = update_doc_df_elem
else:
raise NotImplementedError
selector_list = [selected_domains, selected_langs, selected_rerankings, search_bar, show_anonymous]
search_bar_args = [
source_df,
version,
] + selector_list
selector_args = (
[version, source_df]
+ selector_list
+ [
show_revision_and_timestamp,
]
)
# Set search_bar listener
search_bar.submit(update_table_func, search_bar_args, target_df)
# Set column-wise listener
for selector in selector_list:
selector.change(
update_table_func,
selector_args,
target_df,
queue=True,
)
def update_qa_df_elem(
version: str,
hidden_df: pd.DataFrame,
domains: list,
langs: list,
reranking_query: list,
query: str,
show_anonymous: bool,
show_revision_and_timestamp: bool = False,
reset_ranking: bool = True,
):
return _update_df_elem(
TaskType.qa,
version,
hidden_df,
domains,
langs,
reranking_query,
query,
show_anonymous,
reset_ranking,
show_revision_and_timestamp,
)
def styled_error(error):
return f"<p style='color: red; font-size: 20px; text-align: center;'>{error}</p>"
def styled_message(message):
return f"<p style='color: green; font-size: 20px; text-align: center;'>{message}</p>"
|