Spaces:
Sleeping
Sleeping
from nodes.LLMNode import * | |
import time | |
from utils.util import * | |
class IO: | |
def __init__(self, fewshot="\n", model_name="text-davinci-003"): | |
self.fewshot = fewshot | |
self.model_name = model_name | |
self.llm = LLMNode("CoT", model_name, input_type=str, output_type=str) | |
self.context_prompt = "Answer following questions. Respond directly with no extra words.\n" | |
self.token_unit_price = get_token_unit_price(model_name) | |
def run(self, input): | |
result = {} | |
st = time.time() | |
prompt = self.context_prompt + self.fewshot + input + '\n' | |
response = self.llm.run(prompt, log=True) | |
result["wall_time"] = time.time() - st | |
result["input"] = response["input"] | |
result["output"] = response["output"] | |
result["prompt_tokens"] = response["prompt_tokens"] | |
result["completion_tokens"] = response["completion_tokens"] | |
result["total_tokens"] = response["prompt_tokens"] + response["completion_tokens"] | |
result["token_cost"] = result["total_tokens"] * self.token_unit_price | |
result["tool_cost"] = 0 | |
result["total_cost"] = result["token_cost"] + result["tool_cost"] | |
result["steps"] = 1 | |
return result | |
class CoT: | |
def __init__(self, fewshot="\n", model_name="text-davinci-003"): | |
self.fewshot = fewshot | |
self.model_name = model_name | |
self.llm = LLMNode("CoT", model_name, input_type=str, output_type=str) | |
self.context_prompt = "Answer following questions. Let's think step by step. Give your reasoning process, and then answer the " \ | |
"question in a new line directly with no extra words.\n" | |
self.token_unit_price = get_token_unit_price(model_name) | |
def run(self, input): | |
result = {} | |
st = time.time() | |
prompt = self.context_prompt + self.fewshot + input + '\n' | |
response = self.llm.run(prompt, log=True) | |
result["wall_time"] = time.time() - st | |
result["input"] = response["input"] | |
result["output"] = response["output"] | |
result["prompt_tokens"] = response["prompt_tokens"] | |
result["completion_tokens"] = response["completion_tokens"] | |
result["total_tokens"] = response["prompt_tokens"] + response["completion_tokens"] | |
result["token_cost"] = result["total_tokens"] * self.token_unit_price | |
result["tool_cost"] = 0 | |
result["total_cost"] = result["token_cost"] + result["tool_cost"] | |
result["steps"] = response["output"].count("Step") | |
return result | |