File size: 13,637 Bytes
4c59875 0b20d0d 4c59875 5542fa4 6964a16 5542fa4 6964a16 5542fa4 49b4a14 6964a16 5542fa4 6964a16 4c59875 5542fa4 6964a16 aa9beda 5542fa4 aa9beda 5542fa4 c5ae15c 5542fa4 8599bf2 5542fa4 8599bf2 5542fa4 8599bf2 5542fa4 4c59875 aa9beda 5542fa4 aa9beda 697b3ec 5542fa4 697b3ec 7918cff 5542fa4 7918cff 5542fa4 697b3ec 5542fa4 c5ae15c 5542fa4 4c59875 a888db4 5542fa4 a888db4 6964a16 b83aee7 6964a16 7918cff 5542fa4 7918cff 5542fa4 7918cff aa9beda 7918cff 6964a16 4c59875 5542fa4 aa9beda 4c59875 aa9beda 4c59875 5542fa4 4c59875 5542fa4 4c59875 5542fa4 4c59875 6ccb59a 8599bf2 6ccb59a aa9beda 5542fa4 aa9beda 5542fa4 8599bf2 5542fa4 aa9beda 5542fa4 7918cff 4c59875 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 |
import pandas as pd
import numpy as np
import gradio as gr
import plotly.express as px
import plotly.graph_objects as go
# Creating data for explanation df in about section
explanation_data = {
"Accuracy Scores": [
"DrugMatchQA",
"MedMCQA: G2B",
"MedMCQA: Original",
"MedMCQA: Difference",
"MedQA: G2B",
"MedQA: Original",
"MedQA: Difference",
"Adjusted Robustness Score"
],
"Description": [
"A custom MC task where the model is asked to match a brand name to its generic counterpart and vice versa. This task is designed to test the model's ability to understand drug name synonyms.",
"G2B Refers to the 'Generic' to 'Brand' name swap. This is model accuracy on MedMCQA task where generic drug names are substituted with brand names.",
"Model accuracy on MedMCQA task with original data. (Only includes questions that overlap with the g2b dataset)",
"Difference in MedMCQA accuracy for swapped and non-swapped datasets, highlighting the impact of G2B drug name substitution on performance.",
"Model accuracy on MedQA (4 options) task where generic drug names are substituted with brand names.",
"Model accuracy on MedQA (4 options) task with original data. (Only includes questions that overlap with the g2b dataset)",
"Difference in MedMCQA accuracy for swapped and non-swapped datasets, highlighting the impact of G2B drug name substitution on performance.",
"A score given by Avg Difference / Avg G2B Accuracy. A higher score indicates a model that is more robust to drug name synonym substitution."
]
}
explanation_df = pd.DataFrame(explanation_data)
#Loading and cleaning eval data processed by json2df.py
df = pd.read_csv("data/csv/models_data.csv")
df['average_g2b'] = df[['medmcqa_g2b', 'medqa_4options_g2b']].mean(axis=1).round(2)
df['average_original_acc'] = df[['medmcqa_orig_filtered', 'medqa_4options_orig_filtered']].mean(axis=1).round(2)
df['average_diff'] = df[['medmcqa_diff', 'medqa_diff']].mean(axis=1).round(2)
df.drop(columns=['b4b'], inplace=True)
#Rename columns for clarity
df.rename(columns={
'medmcqa_g2b': 'MedMCQA: G2B',
'medmcqa_orig_filtered': 'MedMCQA: Original',
'medmcqa_diff': 'MedMCQA: Difference',
'medqa_4options_g2b': 'MedQA: G2B',
'medqa_4options_orig_filtered': 'MedQA: Original',
'medqa_diff': 'MedQA: Difference',
'b4bqa': 'DrugMatchQA',
'average_g2b': 'Average G2B Accuracy',
'average_original_acc': 'Average Original Accuracy',
'average_diff': 'Average Difference'
}, inplace=True)
#Create adjusted robustness score that accounts for g2b accuracy and difference in accuracy
df['Average Accuracy (Original and G2B)'] = (df['Average G2B Accuracy'] + df['Average Original Accuracy']) / 2
#df['Adjusted Robustness Score'] = df['Average Accuracy (Original and G2B)'] - 0.25 - df['Average Difference'].abs()
#df['Adjusted Robustness Score'] = df['Adjusted Robustness Score'].round(2)
#if acc is 0 in DrugMatchQA column, set it to none
df['DrugMatchQA'] = df['DrugMatchQA'].apply(lambda x: None if x == 0 else x)
def remove_rows_with_strings(df, column, strings):
for string in strings:
df = df[~df[column].str.contains(string)]
return df
models_to_remove = ['microsoft-phi-1', 'microsoft-phi-1_5', 'meta-llama-Llama-2-7b-hf']
non_random_df = remove_rows_with_strings(df, 'Model', models_to_remove)
#Defining functions for filtering and plotting
filter_mapping = {
"all": "all",
"π’ Pre-trained": "π’",
"π© Continuously pre-trained": "π©",
"πΆ Fine-tuned on domain-specific data": "πΆ",
"π¬ Chat-models (RLHF, DPO, IFT, ...)": "π¬"
}
def filter_items(df, query):
if query == "all":
return df
filter_value = filter_mapping[query]
return df[df["T"].str.contains(filter_value, na=False)]
def create_scatter_plot(df, x_col, y_col, title, x_title, y_title):
fig = px.scatter(df, x=x_col, y=y_col, color='Model', title=title)
fig.add_trace(
go.Scatter(
x=[0, 100],
y=[0, 100],
mode="lines",
name="y=x line",
line=dict(color='black', dash='dash')
)
)
fig.update_layout(
xaxis_title=x_title,
yaxis_title=y_title,
xaxis=dict(range=[0, 100]),
yaxis=dict(range=[0, 100]),
legend_title_text='Model'
)
fig.update_traces(marker=dict(size=10), selector=dict(mode='markers'))
return fig
def create_lm_plot(df, x_col, y_col, title, x_title, y_title):
fig = px.scatter(df, x=x_col, y=y_col, color='Model', title=title, trendline='ols')
fig.update_layout(
xaxis_title=x_title,
yaxis_title=y_title,
legend_title_text='Model'
)
fig.update_traces(marker=dict(size=10), selector=dict(mode='markers'))
return fig
def create_bar_plot(df, col, title):
sorted_df = df.sort_values(by=col, ascending=True)
fig = px.bar(sorted_df,
x=col,
y='Model',
orientation='h',
title=title,
color=col,
color_continuous_scale='Aggrnyl')
fig.update_layout(xaxis_title=col, yaxis_title='Model', height=600, coloraxis_showscale=False)
fig.update_xaxes(range=[-20, 20])
return fig
def create_bar_plot_drugmatchqa(df, col, title):
clean_df = df.dropna(subset=['DrugMatchQA'])
sorted_df = clean_df.sort_values(by=col, ascending=True)
fig = px.bar(sorted_df,
x=col,
y='Model',
orientation='h',
title=title,
color=col,
color_continuous_scale='Aggrnyl')
fig.update_layout(xaxis_title=col, yaxis_title='Model', height=600, coloraxis_showscale=False)
return fig
def create_bar_plot_adjusted(df, col, title):
sorted_df = df.sort_values(by=col, ascending=True)
fig = px.bar(sorted_df,
x=col,
y='Model',
orientation='h',
title=title,
color=col,
color_continuous_scale='Aggrnyl')
fig.update_layout(xaxis_title=col, yaxis_title='Model', height=600, coloraxis_showscale=False)
return fig
#Create UI/Layout
with gr.Blocks(css="custom.css") as demo:
with gr.Column():
gr.Markdown(
"""<div style="text-align: center;"><h1> <span style='color: #00BF63;'>π° RABBITS</span>: <span style='color: #00BF63;'>R</span>obust <span style='color: #00BF63;'>A</span>ssessment of <span style='color: #00BF63;'>B</span>iomedical <span style='color: #00BF63;'>B</span>enchmarks <span style='color: #00BF63;'>I</span>nvolving drug
<span style='color: #00BF63;'>T</span>erm <span style='color: #00BF63;'>S</span>ubstitutions<span style='color: #00BF63;'></span></h1></div>"""
)
with gr.Row():
gr.Markdown(""" """)
with gr.Row():
gr.Markdown(
"""<div style="text-align: justify;">
<p class='markdown-text'>Robust language models are crucial in the medical domain and the RABBITS project tests the robustness of LLMs by evaluating their handling of synonyms, specifically brand and generic drug names. We assessed 16 open-source language models from Hugging Face using systematic synonym substitution on MedQA and MedMCQA tasks. Our results show a consistent decline in performance across all model sizes, highlighting challenges in synonym comprehension. Additionally, we discovered significant dataset contamination by identifying overlaps between MedQA, MedMCQA test sets, and the Dolma 1.6 dataset using an 8-gram analysis. This highlights the need to improve model robustness and address contamination in open-source datasets.</p>
</div>"""
)
with gr.Row():
gr.Markdown(""" """)
with gr.Row():
gr.Markdown(""" """)
with gr.Row():
bar1 = gr.Plot(
value=create_bar_plot(df, "MedMCQA: Difference", "Impact of Generic2Brand swap on MedMCQA Accuracy"),
elem_id="bar1"
)
bar2 = gr.Plot(
value=create_bar_plot(df, "MedQA: Difference", "Impact of Generic2Brand swap on MedQA Accuracy"),
elem_id="bar2"
)
with gr.Row():
gr.Markdown(""" """)
#default_visible_columns = []
with gr.Tabs(elem_classes="tab-buttons"):
with gr.TabItem("π Evaluation table"):
with gr.Column():
with gr.Accordion("β‘οΈ See All Columns", open=False):
shown_columns = gr.CheckboxGroup(
choices=df.columns.tolist(),
value=df.columns.tolist(),
label="Select Columns",
interactive=True,
)
with gr.Row():
search_bar = gr.Textbox(
placeholder="π Search for your model and press ENTER...",
show_label=False,
elem_id="search-bar"
)
filter_columns = gr.Radio(
label="β Filter model types",
choices=[
"all",
"π’ Pre-trained",
"π© Continuously pre-trained",
"πΆ Fine-tuned on domain-specific data",
"π¬ Chat-models (RLHF, DPO, IFT, ...)"
],
value="all",
elem_id="filter-columns",
)
leaderboard_df = gr.Dataframe(
value=df,
headers="keys",
datatype=["html" if col == "Model" else "str" for col in df.columns],
interactive=False,
elem_id="leaderboard-table"
)
def update_leaderboard(search_query):
filtered_df = df[df["Model"].str.contains(search_query, case=False)]
return filtered_df
search_bar.submit(
update_leaderboard,
inputs=search_bar,
outputs=leaderboard_df
)
def filter_update(query):
filtered_df = filter_items(df, query)
return filtered_df
filter_columns.change(
filter_update,
inputs=filter_columns,
outputs=leaderboard_df
)
shown_columns.change(
lambda cols: df[cols],
inputs=shown_columns,
outputs=leaderboard_df
)
with gr.TabItem("π Evaluation Plots"):
with gr.Column():
with gr.Row():
scatter1 = gr.Plot(
value=create_scatter_plot(df, "MedMCQA: Original", "MedMCQA: G2B",
"MedMCQA: Orig vs G2B", "MedMCQA: Original", "MedMCQA: G2B"),
elem_id="scatter1"
)
scatter2 = gr.Plot(
value=create_scatter_plot(df, "MedQA: Original", "MedQA: G2B",
"MedQA: Orig vs G2B", "MedQA: Original", "MedQA: G2B"),
elem_id="scatter2"
)
with gr.TabItem("π About"):
with gr.Column():
gr.Markdown(
"""<div style="text-align: center;">
<h2>About the RABBITS LLM Leaderboard</h2>
<p>The following is an overview of the framework, along with an explanation of scores in the evaluation table.</p>
</div>""",
elem_classes="markdown-text"
)
with gr.Row():
gr.Image(value="workflow-1-2.svg", width=200, height=450)
gr.Image(value="workflow-3-4.svg", width=200, height=450)
with gr.Row():
gr.Dataframe(
value=explanation_df,
headers="keys",
datatype=["str", "str"],
interactive=False,
label="Explanation of Scores"
)
with gr.TabItem("π Submit Here!"):
gr.Markdown(
"""<div style="text-align: center;">
<h2>Submit Your Model Results</h2>
<p>If you have new model results that you would like to add to the leaderboard, please follow the submission guidelines below:</p>
<ul>
<li>COMING SOON</li>
</ul>
<p>COMING SOON</p>
</div>""",
elem_classes="markdown-text"
)
with gr.Row():
bar3 = gr.Plot(
value=create_bar_plot_drugmatchqa(df, "DrugMatchQA", "Which LLMs are best at matching brand names to generic drug names?"),
elem_id="bar3"
)
bar4 = gr.Plot(
#remove model in model column
value=create_bar_plot_adjusted(non_random_df, "Average Difference", "Which LLMs are most robust to drug name synonym substitution?"),
elem_id="bar4"
)
if __name__ == "__main__":
demo.launch()
|