StyleGANEX / latent_optimization.py
Zaesar's picture
Duplicate from PKUWilliamYang/StyleGANEX
0483f57
import models.stylegan2.lpips as lpips
from torch import autograd, optim
from torchvision import transforms, utils
from tqdm import tqdm
import torch
from scripts.align_all_parallel import align_face
from utils.inference_utils import noise_regularize, noise_normalize_, get_lr, latent_noise, visualize
def latent_optimization(frame, pspex, landmarkpredictor, step=500, device='cuda'):
percept = lpips.PerceptualLoss(
model="net-lin", net="vgg", use_gpu=device.startswith("cuda")
)
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5],std=[0.5,0.5,0.5]),
])
with torch.no_grad():
noise_sample = torch.randn(1000, 512, device=device)
latent_out = pspex.decoder.style(noise_sample)
latent_mean = latent_out.mean(0)
latent_std = ((latent_out - latent_mean).pow(2).sum() / 1000) ** 0.5
y = transform(frame).unsqueeze(dim=0).to(device)
I_ = align_face(frame, landmarkpredictor)
I_ = transform(I_).unsqueeze(dim=0).to(device)
wplus = pspex.encoder(I_) + pspex.latent_avg.unsqueeze(0)
_, f = pspex.encoder(y, return_feat=True)
latent_in = wplus.detach().clone()
feat = [f[0].detach().clone(), f[1].detach().clone()]
# wplus and f to optimize
latent_in.requires_grad = True
feat[0].requires_grad = True
feat[1].requires_grad = True
noises_single = pspex.decoder.make_noise()
basic_height, basic_width = int(y.shape[2]*32/256), int(y.shape[3]*32/256)
noises = []
for noise in noises_single:
noises.append(noise.new_empty(y.shape[0], 1, max(basic_height, int(y.shape[2]*noise.shape[2]/256)),
max(basic_width, int(y.shape[3]*noise.shape[2]/256))).normal_())
for noise in noises:
noise.requires_grad = True
init_lr=0.05
optimizer = optim.Adam(feat + noises, lr=init_lr)
optimizer2 = optim.Adam([latent_in], lr=init_lr)
noise_weight = 0.05 * 0.2
pbar = tqdm(range(step))
latent_path = []
for i in pbar:
t = i / step
lr = get_lr(t, init_lr)
optimizer.param_groups[0]["lr"] = lr
optimizer2.param_groups[0]["lr"] = get_lr(t, init_lr)
noise_strength = latent_std * noise_weight * max(0, 1 - t / 0.75) ** 2
latent_n = latent_noise(latent_in, noise_strength.item())
y_hat, _ = pspex.decoder([latent_n], input_is_latent=True, randomize_noise=False,
first_layer_feature=feat, noise=noises)
batch, channel, height, width = y_hat.shape
if height > y.shape[2]:
factor = height // y.shape[2]
y_hat = y_hat.reshape(
batch, channel, height // factor, factor, width // factor, factor
)
y_hat = y_hat.mean([3, 5])
p_loss = percept(y_hat, y).sum()
n_loss = noise_regularize(noises) * 1e3
loss = p_loss + n_loss
optimizer.zero_grad()
optimizer2.zero_grad()
loss.backward()
optimizer.step()
optimizer2.step()
noise_normalize_(noises)
''' for visualization
if (i + 1) % 100 == 0 or i == 0:
viz = torch.cat((y_hat,y,y_hat-y), dim=3)
visualize(torch.clamp(viz[0].cpu(),-1,1), 60)
'''
pbar.set_description(
(
f"perceptual: {p_loss.item():.4f}; noise regularize: {n_loss.item():.4f};"
f" lr: {lr:.4f}"
)
)
return latent_n, feat, noises, wplus, f