salmanmapkar commited on
Commit
124dbfa
1 Parent(s): f2e18d1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -9
app.py CHANGED
@@ -47,9 +47,9 @@ def RemoveAllFiles():
47
  if (os.path.isfile(file)):
48
  os.remove(file)
49
 
50
- def Transcribe(NumberOfSpeakers, SpeakerNames="", audio="temp_audio.wav"):
51
  SPEAKER_DICT = {}
52
- SPEAKERS = []
53
 
54
  def GetSpeaker(sp):
55
  speaker = sp
@@ -61,10 +61,6 @@ def Transcribe(NumberOfSpeakers, SpeakerNames="", audio="temp_audio.wav"):
61
  else:
62
  speaker = SPEAKER_DICT[sp]
63
  return speaker
64
-
65
- def GenerateSpeakerDict(sp):
66
- global SPEAKERS
67
- SPEAKERS = [speaker.strip() for speaker in sp.split(',')]
68
 
69
  def millisec(timeStr):
70
  spl = timeStr.split(":")
@@ -113,7 +109,7 @@ def Transcribe(NumberOfSpeakers, SpeakerNames="", audio="temp_audio.wav"):
113
  return f"dz_{audio}.wav", dzList, segments
114
 
115
  def transcribe(dz_audio):
116
- model = whisper.load_model("base")
117
  result = model.transcribe(dz_audio)
118
  # for _ in result['segments']:
119
  # print(_['start'], _['end'], _['text'])
@@ -140,7 +136,6 @@ def Transcribe(NumberOfSpeakers, SpeakerNames="", audio="temp_audio.wav"):
140
  #print(f"[{dzList[i][2]}] {c[2]}")
141
  return conversation, ("".join([f"{speaker} --> {text}\n" for speaker, text in conversation]))
142
 
143
- GenerateSpeakerDict(SpeakerNames)
144
  spacermilli, spacer = preprocess(audio)
145
  dz_audio, dzList, segments = diarization(audio)
146
  conversation, t_text = transcribe(dz_audio)
@@ -179,7 +174,7 @@ def Transcribe_V2(num_speakers, speaker_names, audio="temp_audio.wav"):
179
  # conversation.append([GetSpeaker(segment["speaker"]), segment["text"][1:]]) # segment["speaker"] + ' ' + str(time(segment["start"])) + '\n\n'
180
  # conversation[-1][1] += segment["text"][1:]
181
  # return output
182
- return ("".join([f"{speaker} --> {text}\n" for speaker, text in conversation])), conversation
183
 
184
  def get_duration(path):
185
  with contextlib.closing(wave.open(path,'r')) as f:
 
47
  if (os.path.isfile(file)):
48
  os.remove(file)
49
 
50
+ def Transcribe_V1(NumberOfSpeakers, SpeakerNames="", audio="temp_audio.wav"):
51
  SPEAKER_DICT = {}
52
+ SPEAKERS = [speaker.strip() for speaker in SpeakerNames.split(',')]
53
 
54
  def GetSpeaker(sp):
55
  speaker = sp
 
61
  else:
62
  speaker = SPEAKER_DICT[sp]
63
  return speaker
 
 
 
 
64
 
65
  def millisec(timeStr):
66
  spl = timeStr.split(":")
 
109
  return f"dz_{audio}.wav", dzList, segments
110
 
111
  def transcribe(dz_audio):
112
+ model = whisper.load_model("large")
113
  result = model.transcribe(dz_audio)
114
  # for _ in result['segments']:
115
  # print(_['start'], _['end'], _['text'])
 
136
  #print(f"[{dzList[i][2]}] {c[2]}")
137
  return conversation, ("".join([f"{speaker} --> {text}\n" for speaker, text in conversation]))
138
 
 
139
  spacermilli, spacer = preprocess(audio)
140
  dz_audio, dzList, segments = diarization(audio)
141
  conversation, t_text = transcribe(dz_audio)
 
174
  # conversation.append([GetSpeaker(segment["speaker"]), segment["text"][1:]]) # segment["speaker"] + ' ' + str(time(segment["start"])) + '\n\n'
175
  # conversation[-1][1] += segment["text"][1:]
176
  # return output
177
+ return ("".join([f"{speaker} --> {text}\n" for speaker, text in conversation])), ({ "data": [{"speaker": speaker, "text": text} for speaker, text in conversation]}))
178
 
179
  def get_duration(path):
180
  with contextlib.closing(wave.open(path,'r')) as f: