thanhtung09t2 commited on
Commit
2d99e81
1 Parent(s): f5637ab

Upload model

Browse files
.gitattributes CHANGED
@@ -34,3 +34,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
  chromadb/chroma.sqlite3 filter=lfs diff=lfs merge=lfs -text
 
 
 
 
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
  chromadb/chroma.sqlite3 filter=lfs diff=lfs merge=lfs -text
37
+ model/models--BAAI--bge-m3/blobs/21106b6d7dab2952c1d496fb21d5dc9db75c28ed361a05f5020bbba27810dd08 filter=lfs diff=lfs merge=lfs -text
38
+ model/models--BAAI--bge-m3/blobs/b5e0ce3470abf5ef3831aa1bd5553b486803e83251590ab7ff35a117cf6aad38 filter=lfs diff=lfs merge=lfs -text
39
+ model/models--BAAI--bge-m3/blobs/cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865 filter=lfs diff=lfs merge=lfs -text
model/models--BAAI--bge-m3/blobs/0140ba1eac83a3c9b857d64baba91969d988624b ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 8192,
3
+ "do_lower_case": false
4
+ }
model/models--BAAI--bge-m3/blobs/1fba91c78a6c8e17227058ab6d4d3acb5d8630a9 ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.2.2",
4
+ "transformers": "4.33.0",
5
+ "pytorch": "2.1.2+cu121"
6
+ }
7
+ }
model/models--BAAI--bge-m3/blobs/21106b6d7dab2952c1d496fb21d5dc9db75c28ed361a05f5020bbba27810dd08 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:21106b6d7dab2952c1d496fb21d5dc9db75c28ed361a05f5020bbba27810dd08
3
+ size 17098108
model/models--BAAI--bge-m3/blobs/952a9b81c0bfd99800fabf352f69c7ccd46c5e43 ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
model/models--BAAI--bge-m3/blobs/9bd85925f325e25246d94c4918dc02ab98f2a1b7 ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
model/models--BAAI--bge-m3/blobs/b1879d702821e753ffe4245048eee415d54a9385 ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
model/models--BAAI--bge-m3/blobs/b5e0ce3470abf5ef3831aa1bd5553b486803e83251590ab7ff35a117cf6aad38 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b5e0ce3470abf5ef3831aa1bd5553b486803e83251590ab7ff35a117cf6aad38
3
+ size 2271145830
model/models--BAAI--bge-m3/blobs/cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
model/models--BAAI--bge-m3/blobs/dc69ac559dcba2694012009aaa108c614541789a ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "clean_up_tokenization_spaces": true,
4
+ "cls_token": "<s>",
5
+ "eos_token": "</s>",
6
+ "mask_token": {
7
+ "__type": "AddedToken",
8
+ "content": "<mask>",
9
+ "lstrip": true,
10
+ "normalized": true,
11
+ "rstrip": false,
12
+ "single_word": false
13
+ },
14
+ "model_max_length": 8192,
15
+ "pad_token": "<pad>",
16
+ "sep_token": "</s>",
17
+ "sp_model_kwargs": {},
18
+ "tokenizer_class": "XLMRobertaTokenizer",
19
+ "unk_token": "<unk>"
20
+ }
model/models--BAAI--bge-m3/blobs/e5a320176edd6ee1cfb256e68ee5ac0004de9447 ADDED
@@ -0,0 +1,300 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pipeline_tag: sentence-similarity
3
+ tags:
4
+ - sentence-transformers
5
+ - feature-extraction
6
+ - sentence-similarity
7
+ license: mit
8
+ ---
9
+
10
+ For more details please refer to our github repo: https://github.com/FlagOpen/FlagEmbedding
11
+
12
+ # BGE-M3 ([paper](https://arxiv.org/pdf/2402.03216.pdf), [code](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/BGE_M3))
13
+
14
+ In this project, we introduce BGE-M3, which is distinguished for its versatility in Multi-Functionality, Multi-Linguality, and Multi-Granularity.
15
+ - Multi-Functionality: It can simultaneously perform the three common retrieval functionalities of embedding model: dense retrieval, multi-vector retrieval, and sparse retrieval.
16
+ - Multi-Linguality: It can support more than 100 working languages.
17
+ - Multi-Granularity: It is able to process inputs of different granularities, spanning from short sentences to long documents of up to 8192 tokens.
18
+
19
+
20
+
21
+ **Some suggestions for retrieval pipeline in RAG**
22
+
23
+ We recommend to use the following pipeline: hybrid retrieval + re-ranking.
24
+ - Hybrid retrieval leverages the strengths of various methods, offering higher accuracy and stronger generalization capabilities.
25
+ A classic example: using both embedding retrieval and the BM25 algorithm.
26
+ Now, you can try to use BGE-M3, which supports both embedding and sparse retrieval.
27
+ This allows you to obtain token weights (similar to the BM25) without any additional cost when generate dense embeddings.
28
+ To use hybrid retrieval, you can refer to [Vespa](https://github.com/vespa-engine/pyvespa/blob/master/docs/sphinx/source/examples/mother-of-all-embedding-models-cloud.ipynb
29
+ ) and [Milvus](https://github.com/milvus-io/pymilvus/blob/master/examples/hello_hybrid_sparse_dense.py).
30
+
31
+ - As cross-encoder models, re-ranker demonstrates higher accuracy than bi-encoder embedding model.
32
+ Utilizing the re-ranking model (e.g., [bge-reranker](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/reranker), [bge-reranker-v2](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/llm_reranker)) after retrieval can further filter the selected text.
33
+
34
+
35
+ ## News:
36
+ - 2024/7/1: **We update the MIRACL evaluation results of BGE-M3**. To reproduce the new results, you can refer to: [bge-m3_miracl_2cr](https://huggingface.co/datasets/hanhainebula/bge-m3_miracl_2cr). We have also updated our [paper](https://arxiv.org/pdf/2402.03216) on arXiv.
37
+ <details>
38
+ <summary> Details </summary>
39
+
40
+ The previous test results were lower because we mistakenly removed the passages that have the same id as the query from the search results. After correcting this mistake, the overall performance of BGE-M3 on MIRACL is higher than the previous results, but the experimental conclusion remains unchanged. The other results are not affected by this mistake. To reproduce the previous lower results, you need to add the `--remove-query` parameter when using `pyserini.search.faiss` or `pyserini.search.lucene` to search the passages.
41
+
42
+ </details>
43
+ - 2024/3/20: **Thanks Milvus team!** Now you can use hybrid retrieval of bge-m3 in Milvus: [pymilvus/examples
44
+ /hello_hybrid_sparse_dense.py](https://github.com/milvus-io/pymilvus/blob/master/examples/hello_hybrid_sparse_dense.py).
45
+ - 2024/3/8: **Thanks for the [experimental results](https://towardsdatascience.com/openai-vs-open-source-multilingual-embedding-models-e5ccb7c90f05) from @[Yannael](https://huggingface.co/Yannael). In this benchmark, BGE-M3 achieves top performance in both English and other languages, surpassing models such as OpenAI.**
46
+ - 2024/3/2: Release unified fine-tuning [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/unified_finetune) and [data](https://huggingface.co/datasets/Shitao/bge-m3-data)
47
+ - 2024/2/6: We release the [MLDR](https://huggingface.co/datasets/Shitao/MLDR) (a long document retrieval dataset covering 13 languages) and [evaluation pipeline](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB/MLDR).
48
+ - 2024/2/1: **Thanks for the excellent tool from Vespa.** You can easily use multiple modes of BGE-M3 following this [notebook](https://github.com/vespa-engine/pyvespa/blob/master/docs/sphinx/source/examples/mother-of-all-embedding-models-cloud.ipynb)
49
+
50
+
51
+ ## Specs
52
+
53
+ - Model
54
+
55
+ | Model Name | Dimension | Sequence Length | Introduction |
56
+ |:----:|:---:|:---:|:---:|
57
+ | [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) | 1024 | 8192 | multilingual; unified fine-tuning (dense, sparse, and colbert) from bge-m3-unsupervised|
58
+ | [BAAI/bge-m3-unsupervised](https://huggingface.co/BAAI/bge-m3-unsupervised) | 1024 | 8192 | multilingual; contrastive learning from bge-m3-retromae |
59
+ | [BAAI/bge-m3-retromae](https://huggingface.co/BAAI/bge-m3-retromae) | -- | 8192 | multilingual; extend the max_length of [xlm-roberta](https://huggingface.co/FacebookAI/xlm-roberta-large) to 8192 and further pretrained via [retromae](https://github.com/staoxiao/RetroMAE)|
60
+ | [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | 1024 | 512 | English model |
61
+ | [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | 768 | 512 | English model |
62
+ | [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) | 384 | 512 | English model |
63
+
64
+ - Data
65
+
66
+ | Dataset | Introduction |
67
+ |:----------------------------------------------------------:|:-------------------------------------------------:|
68
+ | [MLDR](https://huggingface.co/datasets/Shitao/MLDR) | Docuemtn Retrieval Dataset, covering 13 languages |
69
+ | [bge-m3-data](https://huggingface.co/datasets/Shitao/bge-m3-data) | Fine-tuning data used by bge-m3 |
70
+
71
+
72
+
73
+ ## FAQ
74
+
75
+ **1. Introduction for different retrieval methods**
76
+
77
+ - Dense retrieval: map the text into a single embedding, e.g., [DPR](https://arxiv.org/abs/2004.04906), [BGE-v1.5](https://github.com/FlagOpen/FlagEmbedding)
78
+ - Sparse retrieval (lexical matching): a vector of size equal to the vocabulary, with the majority of positions set to zero, calculating a weight only for tokens present in the text. e.g., BM25, [unicoil](https://arxiv.org/pdf/2106.14807.pdf), and [splade](https://arxiv.org/abs/2107.05720)
79
+ - Multi-vector retrieval: use multiple vectors to represent a text, e.g., [ColBERT](https://arxiv.org/abs/2004.12832).
80
+
81
+
82
+ **2. How to use BGE-M3 in other projects?**
83
+
84
+ For embedding retrieval, you can employ the BGE-M3 model using the same approach as BGE.
85
+ The only difference is that the BGE-M3 model no longer requires adding instructions to the queries.
86
+
87
+ For hybrid retrieval, you can use [Vespa](https://github.com/vespa-engine/pyvespa/blob/master/docs/sphinx/source/examples/mother-of-all-embedding-models-cloud.ipynb
88
+ ) and [Milvus](https://github.com/milvus-io/pymilvus/blob/master/examples/hello_hybrid_sparse_dense.py).
89
+
90
+
91
+ **3. How to fine-tune bge-M3 model?**
92
+
93
+ You can follow the common in this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune)
94
+ to fine-tune the dense embedding.
95
+
96
+ If you want to fine-tune all embedding function of m3 (dense, sparse and colbert), you can refer to the [unified_fine-tuning example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/unified_finetune)
97
+
98
+
99
+
100
+
101
+
102
+
103
+ ## Usage
104
+
105
+ Install:
106
+ ```
107
+ git clone https://github.com/FlagOpen/FlagEmbedding.git
108
+ cd FlagEmbedding
109
+ pip install -e .
110
+ ```
111
+ or:
112
+ ```
113
+ pip install -U FlagEmbedding
114
+ ```
115
+
116
+
117
+
118
+ ### Generate Embedding for text
119
+
120
+ - Dense Embedding
121
+ ```python
122
+ from FlagEmbedding import BGEM3FlagModel
123
+
124
+ model = BGEM3FlagModel('BAAI/bge-m3',
125
+ use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
126
+
127
+ sentences_1 = ["What is BGE M3?", "Defination of BM25"]
128
+ sentences_2 = ["BGE M3 is an embedding model supporting dense retrieval, lexical matching and multi-vector interaction.",
129
+ "BM25 is a bag-of-words retrieval function that ranks a set of documents based on the query terms appearing in each document"]
130
+
131
+ embeddings_1 = model.encode(sentences_1,
132
+ batch_size=12,
133
+ max_length=8192, # If you don't need such a long length, you can set a smaller value to speed up the encoding process.
134
+ )['dense_vecs']
135
+ embeddings_2 = model.encode(sentences_2)['dense_vecs']
136
+ similarity = embeddings_1 @ embeddings_2.T
137
+ print(similarity)
138
+ # [[0.6265, 0.3477], [0.3499, 0.678 ]]
139
+ ```
140
+ You also can use sentence-transformers and huggingface transformers to generate dense embeddings.
141
+ Refer to [baai_general_embedding](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/baai_general_embedding#usage) for details.
142
+
143
+
144
+ - Sparse Embedding (Lexical Weight)
145
+ ```python
146
+ from FlagEmbedding import BGEM3FlagModel
147
+
148
+ model = BGEM3FlagModel('BAAI/bge-m3', use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
149
+
150
+ sentences_1 = ["What is BGE M3?", "Defination of BM25"]
151
+ sentences_2 = ["BGE M3 is an embedding model supporting dense retrieval, lexical matching and multi-vector interaction.",
152
+ "BM25 is a bag-of-words retrieval function that ranks a set of documents based on the query terms appearing in each document"]
153
+
154
+ output_1 = model.encode(sentences_1, return_dense=True, return_sparse=True, return_colbert_vecs=False)
155
+ output_2 = model.encode(sentences_2, return_dense=True, return_sparse=True, return_colbert_vecs=False)
156
+
157
+ # you can see the weight for each token:
158
+ print(model.convert_id_to_token(output_1['lexical_weights']))
159
+ # [{'What': 0.08356, 'is': 0.0814, 'B': 0.1296, 'GE': 0.252, 'M': 0.1702, '3': 0.2695, '?': 0.04092},
160
+ # {'De': 0.05005, 'fin': 0.1368, 'ation': 0.04498, 'of': 0.0633, 'BM': 0.2515, '25': 0.3335}]
161
+
162
+
163
+ # compute the scores via lexical mathcing
164
+ lexical_scores = model.compute_lexical_matching_score(output_1['lexical_weights'][0], output_2['lexical_weights'][0])
165
+ print(lexical_scores)
166
+ # 0.19554901123046875
167
+
168
+ print(model.compute_lexical_matching_score(output_1['lexical_weights'][0], output_1['lexical_weights'][1]))
169
+ # 0.0
170
+ ```
171
+
172
+ - Multi-Vector (ColBERT)
173
+ ```python
174
+ from FlagEmbedding import BGEM3FlagModel
175
+
176
+ model = BGEM3FlagModel('BAAI/bge-m3', use_fp16=True)
177
+
178
+ sentences_1 = ["What is BGE M3?", "Defination of BM25"]
179
+ sentences_2 = ["BGE M3 is an embedding model supporting dense retrieval, lexical matching and multi-vector interaction.",
180
+ "BM25 is a bag-of-words retrieval function that ranks a set of documents based on the query terms appearing in each document"]
181
+
182
+ output_1 = model.encode(sentences_1, return_dense=True, return_sparse=True, return_colbert_vecs=True)
183
+ output_2 = model.encode(sentences_2, return_dense=True, return_sparse=True, return_colbert_vecs=True)
184
+
185
+ print(model.colbert_score(output_1['colbert_vecs'][0], output_2['colbert_vecs'][0]))
186
+ print(model.colbert_score(output_1['colbert_vecs'][0], output_2['colbert_vecs'][1]))
187
+ # 0.7797
188
+ # 0.4620
189
+ ```
190
+
191
+
192
+ ### Compute score for text pairs
193
+ Input a list of text pairs, you can get the scores computed by different methods.
194
+ ```python
195
+ from FlagEmbedding import BGEM3FlagModel
196
+
197
+ model = BGEM3FlagModel('BAAI/bge-m3', use_fp16=True)
198
+
199
+ sentences_1 = ["What is BGE M3?", "Defination of BM25"]
200
+ sentences_2 = ["BGE M3 is an embedding model supporting dense retrieval, lexical matching and multi-vector interaction.",
201
+ "BM25 is a bag-of-words retrieval function that ranks a set of documents based on the query terms appearing in each document"]
202
+
203
+ sentence_pairs = [[i,j] for i in sentences_1 for j in sentences_2]
204
+
205
+ print(model.compute_score(sentence_pairs,
206
+ max_passage_length=128, # a smaller max length leads to a lower latency
207
+ weights_for_different_modes=[0.4, 0.2, 0.4])) # weights_for_different_modes(w) is used to do weighted sum: w[0]*dense_score + w[1]*sparse_score + w[2]*colbert_score
208
+
209
+ # {
210
+ # 'colbert': [0.7796499729156494, 0.4621465802192688, 0.4523794651031494, 0.7898575067520142],
211
+ # 'sparse': [0.195556640625, 0.00879669189453125, 0.0, 0.1802978515625],
212
+ # 'dense': [0.6259765625, 0.347412109375, 0.349853515625, 0.67822265625],
213
+ # 'sparse+dense': [0.482503205537796, 0.23454029858112335, 0.2332356721162796, 0.5122477412223816],
214
+ # 'colbert+sparse+dense': [0.6013619303703308, 0.3255828022956848, 0.32089319825172424, 0.6232916116714478]
215
+ # }
216
+ ```
217
+
218
+
219
+
220
+
221
+ ## Evaluation
222
+
223
+ We provide the evaluation script for [MKQA](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB/MKQA) and [MLDR](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB/MLDR)
224
+
225
+ ### Benchmarks from the open-source community
226
+ ![avatar](./imgs/others.webp)
227
+ The BGE-M3 model emerged as the top performer on this benchmark (OAI is short for OpenAI).
228
+ For more details, please refer to the [article](https://towardsdatascience.com/openai-vs-open-source-multilingual-embedding-models-e5ccb7c90f05) and [Github Repo](https://github.com/Yannael/multilingual-embeddings)
229
+
230
+
231
+ ### Our results
232
+ - Multilingual (Miracl dataset)
233
+
234
+ ![avatar](./imgs/miracl.jpg)
235
+
236
+ - Cross-lingual (MKQA dataset)
237
+
238
+ ![avatar](./imgs/mkqa.jpg)
239
+
240
+ - Long Document Retrieval
241
+ - MLDR:
242
+ ![avatar](./imgs/long.jpg)
243
+ Please note that [MLDR](https://huggingface.co/datasets/Shitao/MLDR) is a document retrieval dataset we constructed via LLM,
244
+ covering 13 languages, including test set, validation set, and training set.
245
+ We utilized the training set from MLDR to enhance the model's long document retrieval capabilities.
246
+ Therefore, comparing baselines with `Dense w.o.long`(fine-tuning without long document dataset) is more equitable.
247
+ Additionally, this long document retrieval dataset will be open-sourced to address the current lack of open-source multilingual long text retrieval datasets.
248
+ We believe that this data will be helpful for the open-source community in training document retrieval models.
249
+
250
+ - NarritiveQA:
251
+ ![avatar](./imgs/nqa.jpg)
252
+
253
+ - Comparison with BM25
254
+
255
+ We utilized Pyserini to implement BM25, and the test results can be reproduced by this [script](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB/MLDR#bm25-baseline).
256
+ We tested BM25 using two different tokenizers:
257
+ one using Lucene Analyzer and the other using the same tokenizer as M3 (i.e., the tokenizer of xlm-roberta).
258
+ The results indicate that BM25 remains a competitive baseline,
259
+ especially in long document retrieval.
260
+
261
+ ![avatar](./imgs/bm25.jpg)
262
+
263
+
264
+
265
+ ## Training
266
+ - Self-knowledge Distillation: combining multiple outputs from different
267
+ retrieval modes as reward signal to enhance the performance of single mode(especially for sparse retrieval and multi-vec(colbert) retrival)
268
+ - Efficient Batching: Improve the efficiency when fine-tuning on long text.
269
+ The small-batch strategy is simple but effective, which also can used to fine-tune large embedding model.
270
+ - MCLS: A simple method to improve the performance on long text without fine-tuning.
271
+ If you have no enough resource to fine-tuning model with long text, the method is useful.
272
+
273
+ Refer to our [report](https://arxiv.org/pdf/2402.03216.pdf) for more details.
274
+
275
+
276
+
277
+
278
+
279
+
280
+ ## Acknowledgement
281
+
282
+ Thanks to the authors of open-sourced datasets, including Miracl, MKQA, NarritiveQA, etc.
283
+ Thanks to the open-sourced libraries like [Tevatron](https://github.com/texttron/tevatron), [Pyserini](https://github.com/castorini/pyserini).
284
+
285
+
286
+
287
+ ## Citation
288
+
289
+ If you find this repository useful, please consider giving a star :star: and citation
290
+
291
+ ```
292
+ @misc{bge-m3,
293
+ title={BGE M3-Embedding: Multi-Lingual, Multi-Functionality, Multi-Granularity Text Embeddings Through Self-Knowledge Distillation},
294
+ author={Jianlv Chen and Shitao Xiao and Peitian Zhang and Kun Luo and Defu Lian and Zheng Liu},
295
+ year={2024},
296
+ eprint={2402.03216},
297
+ archivePrefix={arXiv},
298
+ primaryClass={cs.CL}
299
+ }
300
+ ```
model/models--BAAI--bge-m3/blobs/e6eda1c72da8f9dc30fdd9b69c73d35af3b7a7ad ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 1024,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 4096,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 8194,
17
+ "model_type": "xlm-roberta",
18
+ "num_attention_heads": 16,
19
+ "num_hidden_layers": 24,
20
+ "output_past": true,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.33.0",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 250002
28
+ }
model/models--BAAI--bge-m3/refs/main ADDED
@@ -0,0 +1 @@
 
 
1
+ 5617a9f61b028005a4858fdac845db406aefb181