Spaces:
Sleeping
Sleeping
# app cơ bản để demo RAG chatbot, sử dụng streamlit để đơn giản hoá phần frontend/U | |
import sys | |
import os | |
import streamlit as st | |
from time import time | |
import logging | |
os.environ['ROOT_PATH'] = os.path.dirname(os.path.abspath(__file__)) | |
from api.engine import ChatEngine | |
logging.basicConfig(stream=sys.stdout, level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') | |
st.title("Smart Eco Footprint") | |
def initialize(): | |
return ChatEngine(vector_index="chroma", force_new_db=False) | |
engine = initialize() | |
if "messages" not in st.session_state: | |
st.session_state.messages = [] | |
for message in st.session_state.messages: | |
with st.chat_message(message["role"]): | |
st.markdown(message["content"]) | |
if user_input := st.chat_input("Bạn muốn hỏi điều gì?"): | |
st.session_state.messages.append({"role": "user", "content": user_input}) | |
with st.chat_message("user"): | |
st.markdown(user_input) | |
with st.chat_message("assistant"): | |
message_placeholder = st.empty() | |
response_content = "" | |
with st.spinner("Thinking..."): | |
start = time() | |
streaming_response = engine.query_streaming(user_input) | |
# Stream kết quả và cập nhật lên giao diện | |
query_end = time() | |
print(f"Query time calculated: {round(query_end-start,4)}") | |
for chunk in streaming_response.response_gen: | |
response_content += chunk | |
message_placeholder.markdown(f"{response_content}") | |
end = time() | |
print(f"Response time calculated: {round(end-start,4)}") | |
message_placeholder.markdown(response_content) | |
st.session_state.messages.append({"role": "assistant", "content": response_content}) |