AI-RESEARCHER-2024 commited on
Commit
0ddbfad
1 Parent(s): 5d14fe6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +23 -13
app.py CHANGED
@@ -2,21 +2,31 @@ import os
2
  import gradio as gr
3
  from llama_index.core import SimpleDirectoryReader, VectorStoreIndex
4
  from langchain_community.embeddings import HuggingFaceEmbeddings
5
- from llama_index.llms.ollama import Ollama
6
-
7
- # Set up Ollama
8
- os.system('curl -fsSL https://ollama.com/install.sh | sh')
9
- os.system('ollama serve &')
10
- os.system('sleep 5')
11
- os.system('ollama pull llama3.2')
12
- os.system('ollama pull llama3.2')
13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
  # Initialize embeddings and LLM
15
  embeddings = HuggingFaceEmbeddings(model_name="BAAI/bge-small-en-v1.5")
16
- llama = Ollama(
17
- model="llama3.2",
18
- request_timeout=1000,
19
- )
20
 
21
  def initialize_index():
22
  """Initialize the vector store index from PDF files in the data directory"""
@@ -34,7 +44,7 @@ def initialize_index():
34
  )
35
 
36
  # Return query engine with Llama
37
- return index.as_query_engine(llm=llama)
38
 
39
  # Initialize the query engine at startup
40
  query_engine = initialize_index()
 
2
  import gradio as gr
3
  from llama_index.core import SimpleDirectoryReader, VectorStoreIndex
4
  from langchain_community.embeddings import HuggingFaceEmbeddings
5
+ from llama_index.llms.llama_cpp import LlamaCPP
6
+ from llama_index.llms.llama_cpp.llama_utils import (
7
+ messages_to_prompt,
8
+ completion_to_prompt,
9
+ )
 
 
 
10
 
11
+ model_url = 'https://huggingface.co/bartowski/Llama-3.2-3B-Instruct-GGUF/resolve/main/Llama-3.2-3B-Instruct-Q4_K_M.gguf'
12
+ llm = LlamaCPP(
13
+ # You can pass in the URL to a GGML model to download it automatically
14
+ model_url=model_url,
15
+ temperature=0.1,
16
+ max_new_tokens=256,
17
+ context_window=2048,
18
+ # kwargs to pass to __call__()
19
+ generate_kwargs={},
20
+ # kwargs to pass to __init__()
21
+ # set to at least 1 to use GPU
22
+ model_kwargs={"n_gpu_layers": 1},
23
+ # transform inputs into Llama2 format
24
+ messages_to_prompt=messages_to_prompt,
25
+ completion_to_prompt=completion_to_prompt,
26
+ verbose=True,
27
+ )
28
  # Initialize embeddings and LLM
29
  embeddings = HuggingFaceEmbeddings(model_name="BAAI/bge-small-en-v1.5")
 
 
 
 
30
 
31
  def initialize_index():
32
  """Initialize the vector store index from PDF files in the data directory"""
 
44
  )
45
 
46
  # Return query engine with Llama
47
+ return index.as_query_engine(llm=llm)
48
 
49
  # Initialize the query engine at startup
50
  query_engine = initialize_index()