import os from typing import Any, List, Mapping, Optional, Dict import chainlit as cl from langchain_community.embeddings import HuggingFaceEmbeddings from langchain.prompts import ChatPromptTemplate from langchain_core.output_parsers import StrOutputParser from langchain_core.runnables import RunnablePassthrough from langchain_community.vectorstores import Chroma from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.llms.base import LLM from llama_cpp import Llama from pydantic import Field, BaseModel class LlamaCppLLM(LLM, BaseModel): """Custom LangChain wrapper for llama.cpp""" client: Any = Field(default=None, exclude=True) model_path: str = Field(..., description="Path to the model file") n_ctx: int = Field(default=2048, description="Context window size") n_threads: int = Field(default=4, description="Number of CPU threads") n_gpu_layers: int = Field(default=0, description="Number of GPU layers") def __init__(self, **kwargs): super().__init__(**kwargs) self.client = Llama( model_path=self.model_path, n_ctx=self.n_ctx, n_threads=self.n_threads, n_gpu_layers=self.n_gpu_layers ) @property def _llm_type(self) -> str: return "llama.cpp" def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: if not self.client: raise RuntimeError("Model not initialized") response = self.client.create_chat_completion( messages=[{"role": "user", "content": prompt}], **kwargs ) return response["choices"][0]["message"]["content"] # Initialize the embedding model embeddings = HuggingFaceEmbeddings( model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={'device': 'cpu'}, encode_kwargs={'normalize_embeddings': True} ) # Load the existing Chroma vector store persist_directory = os.path.join(os.path.dirname(__file__), 'mydb') vectorstore = Chroma(persist_directory=persist_directory, embedding_function=embeddings) # Initialize the LLM model_path = os.path.join(os.path.dirname(__file__), "models", "llama-model.gguf") llm = LlamaCppLLM( model_path=model_path, n_ctx=2048, n_threads=4, n_gpu_layers=0 ) # Create the RAG prompt template template = """You are a helpful AI assistant. Using only the following context, answer the user's question. If you cannot find the answer in the context, say "I don't have enough information to answer this question." Context: {context} Question: {question} Answer: Let me help you with that.""" prompt = ChatPromptTemplate.from_template(template) @cl.on_chat_start async def start(): # Send initial message await cl.Message( content="Hi! I'm ready to answer your questions based on the stored documents. What would you like to know?" ).send() @cl.on_message async def main(message: cl.Message): # Create a loading message msg = cl.Message(content="") await msg.send() # Start typing effect async with cl.Step(name="Searching documents..."): try: # Search the vector store retriever = vectorstore.as_retriever(search_kwargs={"k": 3}) # Create the RAG chain rag_chain = ( {"context": retriever, "question": RunnablePassthrough()} | prompt | llm | StrOutputParser() ) # Execute the chain response = await cl.make_async(rag_chain)(message.content) # Update loading message with response await msg.update(content=response) # Show source documents docs = retriever.get_relevant_documents(message.content) elements = [] for i, doc in enumerate(docs): source_name = f"Source {i+1}" elements.append( cl.Text(name=source_name, content=doc.page_content, display="inline") ) if elements: await msg.update(elements=elements) except Exception as e: import traceback error_msg = f"An error occurred: {str(e)}\n{traceback.format_exc()}" await msg.update(content=error_msg) if __name__ == '__main__': cl.start()