import chainlit as cl from langchain_openai import ChatOpenAI from langchain.chains import RetrievalQA from langchain.vectorstores import Chroma from langchain_community.embeddings import HuggingFaceEmbeddings embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2") llm = llm = ChatOpenAI( api_key="ollama", model='llama3.2', base_url="http://localhost:11434/v1", temperature=0 ) # Load the persisted Chroma database persist_directory = 'mydb' vectordb = Chroma(persist_directory=persist_directory, embedding_function=embeddings) # Create a retriever from the vector store retriever = vectordb.as_retriever() # Set up the QA chain qa_chain = RetrievalQA.from_chain_type(llm=llm, chain_type='stuff', retriever=retriever) # Define the Chainlit app @cl.on_message def main(message): response = qa_chain.run(message.content) cl.Message(content=response).send()