import os import time from omegaconf import OmegaConf import torch from scripts.evaluation.funcs import load_model_checkpoint, save_videos, batch_ddim_sampling from utils.utils import instantiate_from_config from huggingface_hub import hf_hub_download class Text2Video(): def __init__(self,result_dir='./tmp/',gpu_num=1) -> None: self.download_model() self.result_dir = result_dir if not os.path.exists(self.result_dir): os.mkdir(self.result_dir) ckpt_path='checkpoints/base_512_v2/model.ckpt' config_file='configs/inference_t2v_512_v2.0.yaml' config = OmegaConf.load(config_file) model_config = config.pop("model", OmegaConf.create()) model_config['params']['unet_config']['params']['use_checkpoint']=False model_list = [] for gpu_id in range(gpu_num): model = instantiate_from_config(model_config) # model = model.cuda(gpu_id) assert os.path.exists(ckpt_path), "Error: checkpoint Not Found!" model = load_model_checkpoint(model, ckpt_path) model.eval() model_list.append(model) self.model_list = model_list self.save_fps = 8 def get_prompt(self, prompt, steps=50, cfg_scale=12.0, eta=1.0, fps=16): torch.cuda.empty_cache() print('start:', prompt, time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time()))) start = time.time() gpu_id=0 if steps > 60: steps = 60 model = self.model_list[gpu_id] model = model.cuda() batch_size=1 channels = model.model.diffusion_model.in_channels frames = model.temporal_length h, w = 320 // 8, 512 // 8 noise_shape = [batch_size, channels, frames, h, w] #prompts = batch_size * [""] text_emb = model.get_learned_conditioning([prompt]) cond = {"c_crossattn": [text_emb], "fps": fps} ## inference batch_samples = batch_ddim_sampling(model, cond, noise_shape, n_samples=1, ddim_steps=steps, ddim_eta=eta, cfg_scale=cfg_scale) ## b,samples,c,t,h,w prompt_str = prompt.replace("/", "_slash_") if "/" in prompt else prompt prompt_str = prompt_str.replace(" ", "_") if " " in prompt else prompt_str prompt_str=prompt_str[:30] save_videos(batch_samples, self.result_dir, filenames=[prompt_str], fps=self.save_fps) print(f"Saved in {prompt_str}. Time used: {(time.time() - start):.2f} seconds") model=model.cpu() return os.path.join(self.result_dir, f"{prompt_str}.mp4") def download_model(self): REPO_ID = 'VideoCrafter/VideoCrafter2' filename_list = ['model.ckpt'] if not os.path.exists('./checkpoints/base_512_v2/'): os.makedirs('./checkpoints/base_512_v2/') for filename in filename_list: local_file = os.path.join('./checkpoints/base_512_v2/', filename) if not os.path.exists(local_file): hf_hub_download(repo_id=REPO_ID, filename=filename, local_dir='./checkpoints/base_512_v2/', local_dir_use_symlinks=False) if __name__ == '__main__': t2v = Text2Video() video_path = t2v.get_prompt('a black swan swims on the pond') print('done', video_path)