Spaces:
Runtime error
Runtime error
Haoxin Chen
commited on
Commit
·
af6180a
1
Parent(s):
a34a4fc
update VideoCrafter1
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitignore +1 -0
- README.md +0 -13
- app.py +36 -46
- models/adapter_t2v_depth/model_config.yaml → configs/inference_i2v_512_v1.0.yaml +30 -36
- models/base_t2v/model_config.yaml → configs/inference_t2v_1024_v1.0.yaml +24 -19
- configs/inference_t2v_512_v1.0.yaml +77 -0
- demo_test.py +4 -4
- extralibs/midas/__init__.py +0 -0
- extralibs/midas/api.py +0 -171
- extralibs/midas/midas/__init__.py +0 -0
- extralibs/midas/midas/base_model.py +0 -16
- extralibs/midas/midas/blocks.py +0 -342
- extralibs/midas/midas/dpt_depth.py +0 -110
- extralibs/midas/midas/midas_net.py +0 -76
- extralibs/midas/midas/midas_net_custom.py +0 -128
- extralibs/midas/midas/transforms.py +0 -234
- extralibs/midas/midas/vit.py +0 -489
- extralibs/midas/utils.py +0 -189
- i2v_test.py +78 -0
- input/flamingo.mp4 +0 -0
- input/prompts.txt +0 -2
- lvdm/basics.py +100 -0
- lvdm/common.py +95 -0
- lvdm/data/webvid.py +0 -188
- lvdm/{models/modules/distributions.py → distributions.py} +19 -0
- lvdm/ema.py +76 -0
- lvdm/models/autoencoder.py +29 -12
- lvdm/models/ddpm3d.py +261 -982
- lvdm/models/modules/adapter.py +0 -105
- lvdm/models/modules/attention_temporal.py +0 -399
- lvdm/models/modules/condition_modules.py +0 -40
- lvdm/models/modules/lora.py +0 -1251
- lvdm/{samplers → models/samplers}/ddim.py +120 -51
- lvdm/models/{modules/util.py → utils_diffusion.py} +28 -272
- lvdm/modules/attention.py +475 -0
- lvdm/modules/encoders/condition.py +392 -0
- lvdm/modules/encoders/ip_resampler.py +136 -0
- lvdm/{models/modules/autoencoder_modules.py → modules/networks/ae_modules.py} +294 -45
- lvdm/{models/modules → modules/networks}/openaimodel3d.py +287 -380
- lvdm/modules/x_transformer.py +640 -0
- lvdm/utils/common_utils.py +0 -132
- lvdm/utils/dist_utils.py +0 -19
- lvdm/utils/saving_utils.py +0 -269
- prompts/i2v_prompts/horse.png +0 -0
- prompts/i2v_prompts/seashore.png +0 -0
- prompts/i2v_prompts/test_prompts.txt +2 -0
- prompts/test_prompts.txt +2 -0
- requirements.txt +4 -3
- sample_adapter.sh +0 -22
- sample_text2video.sh +0 -16
.gitignore
CHANGED
@@ -8,3 +8,4 @@ results
|
|
8 |
*.ckpt
|
9 |
*.pt
|
10 |
*.pth
|
|
|
|
8 |
*.ckpt
|
9 |
*.pt
|
10 |
*.pth
|
11 |
+
checkpoints
|
README.md
CHANGED
@@ -1,13 +0,0 @@
|
|
1 |
-
---
|
2 |
-
title: VideoCrafter
|
3 |
-
emoji: 🌍
|
4 |
-
colorFrom: gray
|
5 |
-
colorTo: red
|
6 |
-
sdk: gradio
|
7 |
-
sdk_version: 3.24.1
|
8 |
-
app_file: app.py
|
9 |
-
pinned: false
|
10 |
-
license: mit
|
11 |
-
---
|
12 |
-
|
13 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.py
CHANGED
@@ -1,30 +1,30 @@
|
|
1 |
import os
|
2 |
import sys
|
3 |
import gradio as gr
|
4 |
-
# from demo_test import Text2Video,
|
5 |
-
from
|
6 |
-
from
|
7 |
sys.path.insert(1, os.path.join(sys.path[0], 'lvdm'))
|
8 |
|
9 |
t2v_examples = [
|
10 |
-
['an elephant is walking under the sea, 4K, high definition',50,
|
11 |
-
['an astronaut riding a horse in outer space',25,
|
12 |
-
['a monkey is playing a piano',25,
|
13 |
-
['A fire is burning on a candle',25,
|
14 |
-
['a horse is drinking in the river',25,
|
15 |
-
['Robot dancing in times square',25,
|
16 |
]
|
17 |
|
18 |
-
|
19 |
-
['
|
20 |
]
|
21 |
|
22 |
def videocrafter_demo(result_dir='./tmp/'):
|
23 |
text2video = Text2Video(result_dir)
|
24 |
-
|
25 |
with gr.Blocks(analytics_enabled=False) as videocrafter_iface:
|
26 |
-
gr.Markdown("<div align='center'> <h2>
|
27 |
-
<a style='font-size:18px;color: #000000' href='https://github.com/
|
28 |
|
29 |
gr.Markdown("<b> You may duplicate the space and upgrade to GPU in settings for better performance and faster inference without waiting in the queue. <a style='display:inline-block' href='https://huggingface.co/spaces/VideoCrafter/VideoCrafter?duplicate=true'> <img src='https://bit.ly/3gLdBN6' alt='Duplicate Space'></a> </b>")
|
30 |
#######t2v#######
|
@@ -33,65 +33,55 @@ def videocrafter_demo(result_dir='./tmp/'):
|
|
33 |
with gr.Row().style(equal_height=False):
|
34 |
with gr.Column():
|
35 |
input_text = gr.Text(label='Prompts')
|
36 |
-
model_choices=['origin','vangogh','frozen','yourname', 'coco']
|
37 |
-
with gr.Row():
|
38 |
-
model_index = gr.Dropdown(label='Models', elem_id=f"model", choices=model_choices, value=model_choices[0], type="index",interactive=True)
|
39 |
with gr.Row():
|
40 |
steps = gr.Slider(minimum=1, maximum=60, step=1, elem_id=f"steps", label="Sampling steps", value=50)
|
41 |
eta = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, label='ETA', value=1.0, elem_id="eta")
|
42 |
with gr.Row():
|
43 |
-
|
44 |
-
|
45 |
send_btn = gr.Button("Send")
|
46 |
with gr.Tab(label='result'):
|
47 |
-
output_video_1 = gr.Video().style(width=
|
48 |
gr.Examples(examples=t2v_examples,
|
49 |
-
inputs=[input_text,steps,
|
50 |
outputs=[output_video_1],
|
51 |
fn=text2video.get_prompt,
|
52 |
cache_examples=False)
|
53 |
#cache_examples=os.getenv('SYSTEM') == 'spaces')
|
54 |
send_btn.click(
|
55 |
fn=text2video.get_prompt,
|
56 |
-
inputs=[input_text,steps,
|
57 |
outputs=[output_video_1],
|
58 |
)
|
59 |
-
#######
|
60 |
-
with gr.Tab(label='
|
61 |
with gr.Column():
|
62 |
with gr.Row():
|
63 |
-
# with gr.Tab(label='input'):
|
64 |
with gr.Column():
|
65 |
with gr.Row():
|
66 |
-
|
67 |
-
vc_origin_video = gr.Video(label='Center-cropped Video').style(width=256)
|
68 |
-
with gr.Row():
|
69 |
-
vc_input_text = gr.Text(label='Prompts')
|
70 |
with gr.Row():
|
71 |
-
|
72 |
-
vc_cfg_scale = gr.Slider(minimum=1.0, maximum=30.0, step=0.5, label='CFG Scale', value=15.0, elem_id="vc_cfg_scale")
|
73 |
with gr.Row():
|
74 |
-
|
75 |
-
|
76 |
with gr.Row():
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
with gr.Tab(label='Result'):
|
81 |
-
vc_output_info = gr.Text(label='Info')
|
82 |
with gr.Row():
|
83 |
-
|
84 |
-
vc_output_video = gr.Video(label="Generated Video").style(width=256)
|
85 |
|
86 |
-
gr.Examples(examples=
|
87 |
-
inputs=[
|
88 |
-
outputs=[
|
89 |
-
fn =
|
90 |
cache_examples=os.getenv('SYSTEM') == 'spaces',
|
91 |
)
|
92 |
-
|
93 |
-
outputs=[
|
94 |
-
fn =
|
95 |
)
|
96 |
|
97 |
return videocrafter_iface
|
|
|
1 |
import os
|
2 |
import sys
|
3 |
import gradio as gr
|
4 |
+
# from demo_test import Text2Video, Image2Video
|
5 |
+
from t2v_test import Text2Video
|
6 |
+
from i2v_test import Image2Video
|
7 |
sys.path.insert(1, os.path.join(sys.path[0], 'lvdm'))
|
8 |
|
9 |
t2v_examples = [
|
10 |
+
['an elephant is walking under the sea, 4K, high definition',50, 12,1, 16],
|
11 |
+
['an astronaut riding a horse in outer space',25,12,1,16],
|
12 |
+
['a monkey is playing a piano',25,12,1,16],
|
13 |
+
['A fire is burning on a candle',25,12,1,16],
|
14 |
+
['a horse is drinking in the river',25,12,1,16],
|
15 |
+
['Robot dancing in times square',25,12,1,16],
|
16 |
]
|
17 |
|
18 |
+
i2v_examples = [
|
19 |
+
['prompts/i2v_prompts/horse.png', 'horses are walking on the grassland', 50, 12, 1, 16]
|
20 |
]
|
21 |
|
22 |
def videocrafter_demo(result_dir='./tmp/'):
|
23 |
text2video = Text2Video(result_dir)
|
24 |
+
image2video = Image2Video(result_dir)
|
25 |
with gr.Blocks(analytics_enabled=False) as videocrafter_iface:
|
26 |
+
gr.Markdown("<div align='center'> <h2> VideoCrafter1: Open Diffusion Models for High-Quality Video Generation </span> </h2> \
|
27 |
+
<a style='font-size:18px;color: #000000' href='https://github.com/AILab-CVC/VideoCrafter'> Github </div>")
|
28 |
|
29 |
gr.Markdown("<b> You may duplicate the space and upgrade to GPU in settings for better performance and faster inference without waiting in the queue. <a style='display:inline-block' href='https://huggingface.co/spaces/VideoCrafter/VideoCrafter?duplicate=true'> <img src='https://bit.ly/3gLdBN6' alt='Duplicate Space'></a> </b>")
|
30 |
#######t2v#######
|
|
|
33 |
with gr.Row().style(equal_height=False):
|
34 |
with gr.Column():
|
35 |
input_text = gr.Text(label='Prompts')
|
|
|
|
|
|
|
36 |
with gr.Row():
|
37 |
steps = gr.Slider(minimum=1, maximum=60, step=1, elem_id=f"steps", label="Sampling steps", value=50)
|
38 |
eta = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, label='ETA', value=1.0, elem_id="eta")
|
39 |
with gr.Row():
|
40 |
+
cfg_scale = gr.Slider(minimum=1.0, maximum=30.0, step=0.5, label='CFG Scale', value=12.0, elem_id="cfg_scale")
|
41 |
+
fps = gr.Slider(minimum=4, maximum=32, step=1, label='fps', value=16, elem_id="fps")
|
42 |
send_btn = gr.Button("Send")
|
43 |
with gr.Tab(label='result'):
|
44 |
+
output_video_1 = gr.Video().style(width=320)
|
45 |
gr.Examples(examples=t2v_examples,
|
46 |
+
inputs=[input_text,steps,cfg_scale,eta],
|
47 |
outputs=[output_video_1],
|
48 |
fn=text2video.get_prompt,
|
49 |
cache_examples=False)
|
50 |
#cache_examples=os.getenv('SYSTEM') == 'spaces')
|
51 |
send_btn.click(
|
52 |
fn=text2video.get_prompt,
|
53 |
+
inputs=[input_text,steps,cfg_scale,eta,fps],
|
54 |
outputs=[output_video_1],
|
55 |
)
|
56 |
+
#######image2video######
|
57 |
+
with gr.Tab(label='Image2Video'):
|
58 |
with gr.Column():
|
59 |
with gr.Row():
|
|
|
60 |
with gr.Column():
|
61 |
with gr.Row():
|
62 |
+
i2v_input_image = gr.Image(label="Input Image").style(width=256)
|
|
|
|
|
|
|
63 |
with gr.Row():
|
64 |
+
i2v_input_text = gr.Text(label='Prompts')
|
|
|
65 |
with gr.Row():
|
66 |
+
i2v_eta = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, label='ETA', value=1.0, elem_id="i2v_eta")
|
67 |
+
i2v_cfg_scale = gr.Slider(minimum=1.0, maximum=30.0, step=0.5, label='CFG Scale', value=12.0, elem_id="i2v_cfg_scale")
|
68 |
with gr.Row():
|
69 |
+
i2v_steps = gr.Slider(minimum=1, maximum=60, step=1, elem_id="i2v_steps", label="Sampling steps", value=50)
|
70 |
+
i2v_fps = gr.Slider(minimum=4, maximum=32, step=1, elem_id="i2v_fps", label="Generative fps", value=16)
|
71 |
+
i2v_end_btn = gr.Button("Send")
|
72 |
with gr.Tab(label='Result'):
|
|
|
73 |
with gr.Row():
|
74 |
+
i2v_output_video = gr.Video(label="Generated Video").style(width=320)
|
|
|
75 |
|
76 |
+
gr.Examples(examples=i2v_examples,
|
77 |
+
inputs=[i2v_input_image, i2v_input_text, i2v_steps, i2v_cfg_scale, i2v_eta, i2v_fps],
|
78 |
+
outputs=[i2v_output_video],
|
79 |
+
fn = image2video.get_image,
|
80 |
cache_examples=os.getenv('SYSTEM') == 'spaces',
|
81 |
)
|
82 |
+
i2v_end_btn.click(inputs=[i2v_input_image, i2v_input_text, i2v_steps, i2v_cfg_scale, i2v_eta, i2v_fps],
|
83 |
+
outputs=[i2v_output_video],
|
84 |
+
fn = image2video.get_image
|
85 |
)
|
86 |
|
87 |
return videocrafter_iface
|
models/adapter_t2v_depth/model_config.yaml → configs/inference_i2v_512_v1.0.yaml
RENAMED
@@ -1,27 +1,28 @@
|
|
1 |
model:
|
2 |
-
target: lvdm.models.ddpm3d.
|
3 |
params:
|
4 |
linear_start: 0.00085
|
5 |
linear_end: 0.012
|
6 |
num_timesteps_cond: 1
|
7 |
-
log_every_t: 200
|
8 |
timesteps: 1000
|
9 |
first_stage_key: video
|
10 |
cond_stage_key: caption
|
11 |
-
image_size:
|
12 |
-
- 32
|
13 |
-
- 32
|
14 |
-
video_length: 16
|
15 |
-
channels: 4
|
16 |
cond_stage_trainable: false
|
17 |
conditioning_key: crossattn
|
|
|
|
|
|
|
|
|
18 |
scale_by_std: false
|
19 |
scale_factor: 0.18215
|
20 |
-
|
|
|
|
|
|
|
|
|
21 |
unet_config:
|
22 |
-
target: lvdm.
|
23 |
params:
|
24 |
-
image_size: 32
|
25 |
in_channels: 4
|
26 |
out_channels: 4
|
27 |
model_channels: 320
|
@@ -35,16 +36,20 @@ model:
|
|
35 |
- 2
|
36 |
- 4
|
37 |
- 4
|
38 |
-
|
39 |
transformer_depth: 1
|
40 |
-
context_dim:
|
|
|
41 |
use_checkpoint: true
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
45 |
temporal_length: 16
|
46 |
-
|
47 |
-
|
48 |
first_stage_config:
|
49 |
target: lvdm.models.autoencoder.AutoencoderKL
|
50 |
params:
|
@@ -53,7 +58,7 @@ model:
|
|
53 |
ddconfig:
|
54 |
double_z: true
|
55 |
z_channels: 4
|
56 |
-
resolution:
|
57 |
in_channels: 3
|
58 |
out_ch: 3
|
59 |
ch: 128
|
@@ -67,23 +72,12 @@ model:
|
|
67 |
dropout: 0.0
|
68 |
lossconfig:
|
69 |
target: torch.nn.Identity
|
70 |
-
|
71 |
cond_stage_config:
|
72 |
-
target: lvdm.
|
73 |
-
|
74 |
-
|
75 |
-
|
|
|
|
|
76 |
params:
|
77 |
-
|
78 |
-
model_path: models/adapter_t2v_depth/dpt_hybrid-midas.pt
|
79 |
-
|
80 |
-
adapter_config:
|
81 |
-
target: lvdm.models.modules.adapter.Adapter
|
82 |
-
cond_name: depth
|
83 |
-
params:
|
84 |
-
cin: 64
|
85 |
-
channels: [320, 640, 1280, 1280]
|
86 |
-
nums_rb: 2
|
87 |
-
ksize: 1
|
88 |
-
sk: True
|
89 |
-
use_conv: False
|
|
|
1 |
model:
|
2 |
+
target: lvdm.models.ddpm3d.LatentVisualDiffusion
|
3 |
params:
|
4 |
linear_start: 0.00085
|
5 |
linear_end: 0.012
|
6 |
num_timesteps_cond: 1
|
|
|
7 |
timesteps: 1000
|
8 |
first_stage_key: video
|
9 |
cond_stage_key: caption
|
|
|
|
|
|
|
|
|
|
|
10 |
cond_stage_trainable: false
|
11 |
conditioning_key: crossattn
|
12 |
+
image_size:
|
13 |
+
- 40
|
14 |
+
- 64
|
15 |
+
channels: 4
|
16 |
scale_by_std: false
|
17 |
scale_factor: 0.18215
|
18 |
+
use_ema: false
|
19 |
+
uncond_type: empty_seq
|
20 |
+
use_scale: true
|
21 |
+
scale_b: 0.7
|
22 |
+
finegrained: true
|
23 |
unet_config:
|
24 |
+
target: lvdm.modules.networks.openaimodel3d.UNetModel
|
25 |
params:
|
|
|
26 |
in_channels: 4
|
27 |
out_channels: 4
|
28 |
model_channels: 320
|
|
|
36 |
- 2
|
37 |
- 4
|
38 |
- 4
|
39 |
+
num_head_channels: 64
|
40 |
transformer_depth: 1
|
41 |
+
context_dim: 1024
|
42 |
+
use_linear: true
|
43 |
use_checkpoint: true
|
44 |
+
temporal_conv: true
|
45 |
+
temporal_attention: true
|
46 |
+
temporal_selfatt_only: true
|
47 |
+
use_relative_position: false
|
48 |
+
use_causal_attention: false
|
49 |
+
use_image_attention: true
|
50 |
temporal_length: 16
|
51 |
+
addition_attention: true
|
52 |
+
fps_cond: true
|
53 |
first_stage_config:
|
54 |
target: lvdm.models.autoencoder.AutoencoderKL
|
55 |
params:
|
|
|
58 |
ddconfig:
|
59 |
double_z: true
|
60 |
z_channels: 4
|
61 |
+
resolution: 512
|
62 |
in_channels: 3
|
63 |
out_ch: 3
|
64 |
ch: 128
|
|
|
72 |
dropout: 0.0
|
73 |
lossconfig:
|
74 |
target: torch.nn.Identity
|
|
|
75 |
cond_stage_config:
|
76 |
+
target: lvdm.modules.encoders.condition.FrozenOpenCLIPEmbedder
|
77 |
+
params:
|
78 |
+
freeze: true
|
79 |
+
layer: penultimate
|
80 |
+
cond_img_config:
|
81 |
+
target: lvdm.modules.encoders.condition.FrozenOpenCLIPImageEmbedderV2
|
82 |
params:
|
83 |
+
freeze: true
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/base_t2v/model_config.yaml → configs/inference_t2v_1024_v1.0.yaml
RENAMED
@@ -4,24 +4,24 @@ model:
|
|
4 |
linear_start: 0.00085
|
5 |
linear_end: 0.012
|
6 |
num_timesteps_cond: 1
|
7 |
-
log_every_t: 200
|
8 |
timesteps: 1000
|
9 |
first_stage_key: video
|
10 |
cond_stage_key: caption
|
11 |
-
image_size:
|
12 |
-
- 32
|
13 |
-
- 32
|
14 |
-
video_length: 16
|
15 |
-
channels: 4
|
16 |
cond_stage_trainable: false
|
17 |
conditioning_key: crossattn
|
|
|
|
|
|
|
|
|
18 |
scale_by_std: false
|
19 |
scale_factor: 0.18215
|
20 |
-
|
|
|
|
|
|
|
21 |
unet_config:
|
22 |
-
target: lvdm.
|
23 |
params:
|
24 |
-
image_size: 32
|
25 |
in_channels: 4
|
26 |
out_channels: 4
|
27 |
model_channels: 320
|
@@ -35,16 +35,19 @@ model:
|
|
35 |
- 2
|
36 |
- 4
|
37 |
- 4
|
38 |
-
|
39 |
transformer_depth: 1
|
40 |
-
context_dim:
|
|
|
41 |
use_checkpoint: true
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
temporal_length: 16
|
46 |
use_relative_position: true
|
47 |
-
|
|
|
|
|
|
|
48 |
first_stage_config:
|
49 |
target: lvdm.models.autoencoder.AutoencoderKL
|
50 |
params:
|
@@ -53,7 +56,7 @@ model:
|
|
53 |
ddconfig:
|
54 |
double_z: true
|
55 |
z_channels: 4
|
56 |
-
resolution:
|
57 |
in_channels: 3
|
58 |
out_ch: 3
|
59 |
ch: 128
|
@@ -67,6 +70,8 @@ model:
|
|
67 |
dropout: 0.0
|
68 |
lossconfig:
|
69 |
target: torch.nn.Identity
|
70 |
-
|
71 |
cond_stage_config:
|
72 |
-
target: lvdm.
|
|
|
|
|
|
|
|
4 |
linear_start: 0.00085
|
5 |
linear_end: 0.012
|
6 |
num_timesteps_cond: 1
|
|
|
7 |
timesteps: 1000
|
8 |
first_stage_key: video
|
9 |
cond_stage_key: caption
|
|
|
|
|
|
|
|
|
|
|
10 |
cond_stage_trainable: false
|
11 |
conditioning_key: crossattn
|
12 |
+
image_size:
|
13 |
+
- 72
|
14 |
+
- 128
|
15 |
+
channels: 4
|
16 |
scale_by_std: false
|
17 |
scale_factor: 0.18215
|
18 |
+
use_ema: false
|
19 |
+
uncond_type: empty_seq
|
20 |
+
use_scale: true
|
21 |
+
fix_scale_bug: true
|
22 |
unet_config:
|
23 |
+
target: lvdm.modules.networks.openaimodel3d.UNetModel
|
24 |
params:
|
|
|
25 |
in_channels: 4
|
26 |
out_channels: 4
|
27 |
model_channels: 320
|
|
|
35 |
- 2
|
36 |
- 4
|
37 |
- 4
|
38 |
+
num_head_channels: 64
|
39 |
transformer_depth: 1
|
40 |
+
context_dim: 1024
|
41 |
+
use_linear: true
|
42 |
use_checkpoint: true
|
43 |
+
temporal_conv: false
|
44 |
+
temporal_attention: true
|
45 |
+
temporal_selfatt_only: true
|
|
|
46 |
use_relative_position: true
|
47 |
+
use_causal_attention: false
|
48 |
+
temporal_length: 16
|
49 |
+
addition_attention: true
|
50 |
+
fps_cond: true
|
51 |
first_stage_config:
|
52 |
target: lvdm.models.autoencoder.AutoencoderKL
|
53 |
params:
|
|
|
56 |
ddconfig:
|
57 |
double_z: true
|
58 |
z_channels: 4
|
59 |
+
resolution: 512
|
60 |
in_channels: 3
|
61 |
out_ch: 3
|
62 |
ch: 128
|
|
|
70 |
dropout: 0.0
|
71 |
lossconfig:
|
72 |
target: torch.nn.Identity
|
|
|
73 |
cond_stage_config:
|
74 |
+
target: lvdm.modules.encoders.condition.FrozenOpenCLIPEmbedder
|
75 |
+
params:
|
76 |
+
freeze: true
|
77 |
+
layer: penultimate
|
configs/inference_t2v_512_v1.0.yaml
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model:
|
2 |
+
target: lvdm.models.ddpm3d.LatentDiffusion
|
3 |
+
params:
|
4 |
+
linear_start: 0.00085
|
5 |
+
linear_end: 0.012
|
6 |
+
num_timesteps_cond: 1
|
7 |
+
timesteps: 1000
|
8 |
+
first_stage_key: video
|
9 |
+
cond_stage_key: caption
|
10 |
+
cond_stage_trainable: false
|
11 |
+
conditioning_key: crossattn
|
12 |
+
image_size:
|
13 |
+
- 40
|
14 |
+
- 64
|
15 |
+
channels: 4
|
16 |
+
scale_by_std: false
|
17 |
+
scale_factor: 0.18215
|
18 |
+
use_ema: false
|
19 |
+
uncond_type: empty_seq
|
20 |
+
use_scale: true
|
21 |
+
scale_b: 0.7
|
22 |
+
unet_config:
|
23 |
+
target: lvdm.modules.networks.openaimodel3d.UNetModel
|
24 |
+
params:
|
25 |
+
in_channels: 4
|
26 |
+
out_channels: 4
|
27 |
+
model_channels: 320
|
28 |
+
attention_resolutions:
|
29 |
+
- 4
|
30 |
+
- 2
|
31 |
+
- 1
|
32 |
+
num_res_blocks: 2
|
33 |
+
channel_mult:
|
34 |
+
- 1
|
35 |
+
- 2
|
36 |
+
- 4
|
37 |
+
- 4
|
38 |
+
num_head_channels: 64
|
39 |
+
transformer_depth: 1
|
40 |
+
context_dim: 1024
|
41 |
+
use_linear: true
|
42 |
+
use_checkpoint: true
|
43 |
+
temporal_conv: true
|
44 |
+
temporal_attention: true
|
45 |
+
temporal_selfatt_only: true
|
46 |
+
use_relative_position: false
|
47 |
+
use_causal_attention: false
|
48 |
+
temporal_length: 16
|
49 |
+
addition_attention: true
|
50 |
+
fps_cond: true
|
51 |
+
first_stage_config:
|
52 |
+
target: lvdm.models.autoencoder.AutoencoderKL
|
53 |
+
params:
|
54 |
+
embed_dim: 4
|
55 |
+
monitor: val/rec_loss
|
56 |
+
ddconfig:
|
57 |
+
double_z: true
|
58 |
+
z_channels: 4
|
59 |
+
resolution: 512
|
60 |
+
in_channels: 3
|
61 |
+
out_ch: 3
|
62 |
+
ch: 128
|
63 |
+
ch_mult:
|
64 |
+
- 1
|
65 |
+
- 2
|
66 |
+
- 4
|
67 |
+
- 4
|
68 |
+
num_res_blocks: 2
|
69 |
+
attn_resolutions: []
|
70 |
+
dropout: 0.0
|
71 |
+
lossconfig:
|
72 |
+
target: torch.nn.Identity
|
73 |
+
cond_stage_config:
|
74 |
+
target: lvdm.modules.encoders.condition.FrozenOpenCLIPEmbedder
|
75 |
+
params:
|
76 |
+
freeze: true
|
77 |
+
layer: penultimate
|
demo_test.py
CHANGED
@@ -2,15 +2,15 @@ class Text2Video():
|
|
2 |
def __init__(self, result_dir='./tmp/') -> None:
|
3 |
pass
|
4 |
|
5 |
-
def get_prompt(self, input_text, steps=50,
|
6 |
|
7 |
return '01.mp4'
|
8 |
|
9 |
-
class
|
10 |
def __init__(self, result_dir='./tmp/') -> None:
|
11 |
pass
|
12 |
|
13 |
-
def
|
14 |
|
15 |
-
return '
|
16 |
|
|
|
2 |
def __init__(self, result_dir='./tmp/') -> None:
|
3 |
pass
|
4 |
|
5 |
+
def get_prompt(self, input_text, steps=50, cfg_scale=15.0, eta=1.0, fps=16):
|
6 |
|
7 |
return '01.mp4'
|
8 |
|
9 |
+
class Image2Video:
|
10 |
def __init__(self, result_dir='./tmp/') -> None:
|
11 |
pass
|
12 |
|
13 |
+
def get_image(self, input_image, input_prompt, i2v_steps=50, i2v_cfg_scale=15.0, i2v_eta=1.0, i2v_fps=16):
|
14 |
|
15 |
+
return '01.mp4'
|
16 |
|
extralibs/midas/__init__.py
DELETED
File without changes
|
extralibs/midas/api.py
DELETED
@@ -1,171 +0,0 @@
|
|
1 |
-
# based on https://github.com/isl-org/MiDaS
|
2 |
-
|
3 |
-
import cv2
|
4 |
-
import torch
|
5 |
-
import torch.nn as nn
|
6 |
-
from torchvision.transforms import Compose
|
7 |
-
|
8 |
-
from extralibs.midas.midas.dpt_depth import DPTDepthModel
|
9 |
-
from extralibs.midas.midas.midas_net import MidasNet
|
10 |
-
from extralibs.midas.midas.midas_net_custom import MidasNet_small
|
11 |
-
from extralibs.midas.midas.transforms import Resize, NormalizeImage, PrepareForNet
|
12 |
-
|
13 |
-
|
14 |
-
ISL_PATHS = {
|
15 |
-
"dpt_large": "midas_models/dpt_large-midas-2f21e586.pt",
|
16 |
-
"dpt_hybrid": "midas_models/dpt_hybrid-midas-501f0c75.pt",
|
17 |
-
"midas_v21": "",
|
18 |
-
"midas_v21_small": "",
|
19 |
-
}
|
20 |
-
|
21 |
-
|
22 |
-
def disabled_train(self, mode=True):
|
23 |
-
"""Overwrite model.train with this function to make sure train/eval mode
|
24 |
-
does not change anymore."""
|
25 |
-
return self
|
26 |
-
|
27 |
-
|
28 |
-
def load_midas_transform(model_type):
|
29 |
-
# https://github.com/isl-org/MiDaS/blob/master/run.py
|
30 |
-
# load transform only
|
31 |
-
if model_type == "dpt_large": # DPT-Large
|
32 |
-
net_w, net_h = 384, 384
|
33 |
-
resize_mode = "minimal"
|
34 |
-
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
35 |
-
|
36 |
-
elif model_type == "dpt_hybrid": # DPT-Hybrid
|
37 |
-
net_w, net_h = 384, 384
|
38 |
-
resize_mode = "minimal"
|
39 |
-
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
40 |
-
|
41 |
-
elif model_type == "midas_v21":
|
42 |
-
net_w, net_h = 384, 384
|
43 |
-
resize_mode = "upper_bound"
|
44 |
-
normalization = NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
45 |
-
|
46 |
-
elif model_type == "midas_v21_small":
|
47 |
-
net_w, net_h = 256, 256
|
48 |
-
resize_mode = "upper_bound"
|
49 |
-
normalization = NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
50 |
-
|
51 |
-
else:
|
52 |
-
assert False, f"model_type '{model_type}' not implemented, use: --model_type large"
|
53 |
-
|
54 |
-
transform = Compose(
|
55 |
-
[
|
56 |
-
Resize(
|
57 |
-
net_w,
|
58 |
-
net_h,
|
59 |
-
resize_target=None,
|
60 |
-
keep_aspect_ratio=True,
|
61 |
-
ensure_multiple_of=32,
|
62 |
-
resize_method=resize_mode,
|
63 |
-
image_interpolation_method=cv2.INTER_CUBIC,
|
64 |
-
),
|
65 |
-
normalization,
|
66 |
-
PrepareForNet(),
|
67 |
-
]
|
68 |
-
)
|
69 |
-
|
70 |
-
return transform
|
71 |
-
|
72 |
-
|
73 |
-
def load_model(model_type, model_path=None):
|
74 |
-
# https://github.com/isl-org/MiDaS/blob/master/run.py
|
75 |
-
# load network
|
76 |
-
if model_path is None:
|
77 |
-
model_path = ISL_PATHS[model_type]
|
78 |
-
if model_type == "dpt_large": # DPT-Large
|
79 |
-
model = DPTDepthModel(
|
80 |
-
path=model_path,
|
81 |
-
backbone="vitl16_384",
|
82 |
-
non_negative=True,
|
83 |
-
)
|
84 |
-
net_w, net_h = 384, 384
|
85 |
-
resize_mode = "minimal"
|
86 |
-
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
87 |
-
|
88 |
-
elif model_type == "dpt_hybrid": # DPT-Hybrid
|
89 |
-
model = DPTDepthModel(
|
90 |
-
path=model_path,
|
91 |
-
backbone="vitb_rn50_384",
|
92 |
-
non_negative=True,
|
93 |
-
)
|
94 |
-
net_w, net_h = 384, 384
|
95 |
-
resize_mode = "minimal"
|
96 |
-
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
97 |
-
|
98 |
-
elif model_type == "midas_v21":
|
99 |
-
model = MidasNet(model_path, non_negative=True)
|
100 |
-
net_w, net_h = 384, 384
|
101 |
-
resize_mode = "upper_bound"
|
102 |
-
normalization = NormalizeImage(
|
103 |
-
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
|
104 |
-
)
|
105 |
-
|
106 |
-
elif model_type == "midas_v21_small":
|
107 |
-
model = MidasNet_small(model_path, features=64, backbone="efficientnet_lite3", exportable=True,
|
108 |
-
non_negative=True, blocks={'expand': True})
|
109 |
-
net_w, net_h = 256, 256
|
110 |
-
resize_mode = "upper_bound"
|
111 |
-
normalization = NormalizeImage(
|
112 |
-
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
|
113 |
-
)
|
114 |
-
|
115 |
-
else:
|
116 |
-
print(f"model_type '{model_type}' not implemented, use: --model_type large")
|
117 |
-
assert False
|
118 |
-
|
119 |
-
transform = Compose(
|
120 |
-
[
|
121 |
-
Resize(
|
122 |
-
net_w,
|
123 |
-
net_h,
|
124 |
-
resize_target=None,
|
125 |
-
keep_aspect_ratio=True,
|
126 |
-
ensure_multiple_of=32,
|
127 |
-
resize_method=resize_mode,
|
128 |
-
image_interpolation_method=cv2.INTER_CUBIC,
|
129 |
-
),
|
130 |
-
normalization,
|
131 |
-
PrepareForNet(),
|
132 |
-
]
|
133 |
-
)
|
134 |
-
|
135 |
-
return model.eval(), transform
|
136 |
-
|
137 |
-
|
138 |
-
class MiDaSInference(nn.Module):
|
139 |
-
MODEL_TYPES_TORCH_HUB = [
|
140 |
-
"DPT_Large",
|
141 |
-
"DPT_Hybrid",
|
142 |
-
"MiDaS_small"
|
143 |
-
]
|
144 |
-
MODEL_TYPES_ISL = [
|
145 |
-
"dpt_large",
|
146 |
-
"dpt_hybrid",
|
147 |
-
"midas_v21",
|
148 |
-
"midas_v21_small",
|
149 |
-
]
|
150 |
-
|
151 |
-
def __init__(self, model_type, model_path):
|
152 |
-
super().__init__()
|
153 |
-
assert (model_type in self.MODEL_TYPES_ISL)
|
154 |
-
model, _ = load_model(model_type, model_path)
|
155 |
-
self.model = model
|
156 |
-
self.model.train = disabled_train
|
157 |
-
|
158 |
-
def forward(self, x):
|
159 |
-
# x in 0..1 as produced by calling self.transform on a 0..1 float64 numpy array
|
160 |
-
# NOTE: we expect that the correct transform has been called during dataloading.
|
161 |
-
with torch.no_grad():
|
162 |
-
prediction = self.model(x)
|
163 |
-
prediction = torch.nn.functional.interpolate(
|
164 |
-
prediction.unsqueeze(1),
|
165 |
-
size=x.shape[2:],
|
166 |
-
mode="bicubic",
|
167 |
-
align_corners=False,
|
168 |
-
)
|
169 |
-
assert prediction.shape == (x.shape[0], 1, x.shape[2], x.shape[3])
|
170 |
-
return prediction
|
171 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
extralibs/midas/midas/__init__.py
DELETED
File without changes
|
extralibs/midas/midas/base_model.py
DELETED
@@ -1,16 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
|
3 |
-
|
4 |
-
class BaseModel(torch.nn.Module):
|
5 |
-
def load(self, path):
|
6 |
-
"""Load model from file.
|
7 |
-
|
8 |
-
Args:
|
9 |
-
path (str): file path
|
10 |
-
"""
|
11 |
-
parameters = torch.load(path, map_location=torch.device('cpu'))
|
12 |
-
|
13 |
-
if "optimizer" in parameters:
|
14 |
-
parameters = parameters["model"]
|
15 |
-
|
16 |
-
self.load_state_dict(parameters)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
extralibs/midas/midas/blocks.py
DELETED
@@ -1,342 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
|
4 |
-
from .vit import (
|
5 |
-
_make_pretrained_vitb_rn50_384,
|
6 |
-
_make_pretrained_vitl16_384,
|
7 |
-
_make_pretrained_vitb16_384,
|
8 |
-
forward_vit,
|
9 |
-
)
|
10 |
-
|
11 |
-
def _make_encoder(backbone, features, use_pretrained, groups=1, expand=False, exportable=True, hooks=None, use_vit_only=False, use_readout="ignore",):
|
12 |
-
if backbone == "vitl16_384":
|
13 |
-
pretrained = _make_pretrained_vitl16_384(
|
14 |
-
use_pretrained, hooks=hooks, use_readout=use_readout
|
15 |
-
)
|
16 |
-
scratch = _make_scratch(
|
17 |
-
[256, 512, 1024, 1024], features, groups=groups, expand=expand
|
18 |
-
) # ViT-L/16 - 85.0% Top1 (backbone)
|
19 |
-
elif backbone == "vitb_rn50_384":
|
20 |
-
pretrained = _make_pretrained_vitb_rn50_384(
|
21 |
-
use_pretrained,
|
22 |
-
hooks=hooks,
|
23 |
-
use_vit_only=use_vit_only,
|
24 |
-
use_readout=use_readout,
|
25 |
-
)
|
26 |
-
scratch = _make_scratch(
|
27 |
-
[256, 512, 768, 768], features, groups=groups, expand=expand
|
28 |
-
) # ViT-H/16 - 85.0% Top1 (backbone)
|
29 |
-
elif backbone == "vitb16_384":
|
30 |
-
pretrained = _make_pretrained_vitb16_384(
|
31 |
-
use_pretrained, hooks=hooks, use_readout=use_readout
|
32 |
-
)
|
33 |
-
scratch = _make_scratch(
|
34 |
-
[96, 192, 384, 768], features, groups=groups, expand=expand
|
35 |
-
) # ViT-B/16 - 84.6% Top1 (backbone)
|
36 |
-
elif backbone == "resnext101_wsl":
|
37 |
-
pretrained = _make_pretrained_resnext101_wsl(use_pretrained)
|
38 |
-
scratch = _make_scratch([256, 512, 1024, 2048], features, groups=groups, expand=expand) # efficientnet_lite3
|
39 |
-
elif backbone == "efficientnet_lite3":
|
40 |
-
pretrained = _make_pretrained_efficientnet_lite3(use_pretrained, exportable=exportable)
|
41 |
-
scratch = _make_scratch([32, 48, 136, 384], features, groups=groups, expand=expand) # efficientnet_lite3
|
42 |
-
else:
|
43 |
-
print(f"Backbone '{backbone}' not implemented")
|
44 |
-
assert False
|
45 |
-
|
46 |
-
return pretrained, scratch
|
47 |
-
|
48 |
-
|
49 |
-
def _make_scratch(in_shape, out_shape, groups=1, expand=False):
|
50 |
-
scratch = nn.Module()
|
51 |
-
|
52 |
-
out_shape1 = out_shape
|
53 |
-
out_shape2 = out_shape
|
54 |
-
out_shape3 = out_shape
|
55 |
-
out_shape4 = out_shape
|
56 |
-
if expand==True:
|
57 |
-
out_shape1 = out_shape
|
58 |
-
out_shape2 = out_shape*2
|
59 |
-
out_shape3 = out_shape*4
|
60 |
-
out_shape4 = out_shape*8
|
61 |
-
|
62 |
-
scratch.layer1_rn = nn.Conv2d(
|
63 |
-
in_shape[0], out_shape1, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
|
64 |
-
)
|
65 |
-
scratch.layer2_rn = nn.Conv2d(
|
66 |
-
in_shape[1], out_shape2, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
|
67 |
-
)
|
68 |
-
scratch.layer3_rn = nn.Conv2d(
|
69 |
-
in_shape[2], out_shape3, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
|
70 |
-
)
|
71 |
-
scratch.layer4_rn = nn.Conv2d(
|
72 |
-
in_shape[3], out_shape4, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
|
73 |
-
)
|
74 |
-
|
75 |
-
return scratch
|
76 |
-
|
77 |
-
|
78 |
-
def _make_pretrained_efficientnet_lite3(use_pretrained, exportable=False):
|
79 |
-
efficientnet = torch.hub.load(
|
80 |
-
"rwightman/gen-efficientnet-pytorch",
|
81 |
-
"tf_efficientnet_lite3",
|
82 |
-
pretrained=use_pretrained,
|
83 |
-
exportable=exportable
|
84 |
-
)
|
85 |
-
return _make_efficientnet_backbone(efficientnet)
|
86 |
-
|
87 |
-
|
88 |
-
def _make_efficientnet_backbone(effnet):
|
89 |
-
pretrained = nn.Module()
|
90 |
-
|
91 |
-
pretrained.layer1 = nn.Sequential(
|
92 |
-
effnet.conv_stem, effnet.bn1, effnet.act1, *effnet.blocks[0:2]
|
93 |
-
)
|
94 |
-
pretrained.layer2 = nn.Sequential(*effnet.blocks[2:3])
|
95 |
-
pretrained.layer3 = nn.Sequential(*effnet.blocks[3:5])
|
96 |
-
pretrained.layer4 = nn.Sequential(*effnet.blocks[5:9])
|
97 |
-
|
98 |
-
return pretrained
|
99 |
-
|
100 |
-
|
101 |
-
def _make_resnet_backbone(resnet):
|
102 |
-
pretrained = nn.Module()
|
103 |
-
pretrained.layer1 = nn.Sequential(
|
104 |
-
resnet.conv1, resnet.bn1, resnet.relu, resnet.maxpool, resnet.layer1
|
105 |
-
)
|
106 |
-
|
107 |
-
pretrained.layer2 = resnet.layer2
|
108 |
-
pretrained.layer3 = resnet.layer3
|
109 |
-
pretrained.layer4 = resnet.layer4
|
110 |
-
|
111 |
-
return pretrained
|
112 |
-
|
113 |
-
|
114 |
-
def _make_pretrained_resnext101_wsl(use_pretrained):
|
115 |
-
resnet = torch.hub.load("facebookresearch/WSL-Images", "resnext101_32x8d_wsl")
|
116 |
-
return _make_resnet_backbone(resnet)
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
class Interpolate(nn.Module):
|
121 |
-
"""Interpolation module.
|
122 |
-
"""
|
123 |
-
|
124 |
-
def __init__(self, scale_factor, mode, align_corners=False):
|
125 |
-
"""Init.
|
126 |
-
|
127 |
-
Args:
|
128 |
-
scale_factor (float): scaling
|
129 |
-
mode (str): interpolation mode
|
130 |
-
"""
|
131 |
-
super(Interpolate, self).__init__()
|
132 |
-
|
133 |
-
self.interp = nn.functional.interpolate
|
134 |
-
self.scale_factor = scale_factor
|
135 |
-
self.mode = mode
|
136 |
-
self.align_corners = align_corners
|
137 |
-
|
138 |
-
def forward(self, x):
|
139 |
-
"""Forward pass.
|
140 |
-
|
141 |
-
Args:
|
142 |
-
x (tensor): input
|
143 |
-
|
144 |
-
Returns:
|
145 |
-
tensor: interpolated data
|
146 |
-
"""
|
147 |
-
|
148 |
-
x = self.interp(
|
149 |
-
x, scale_factor=self.scale_factor, mode=self.mode, align_corners=self.align_corners
|
150 |
-
)
|
151 |
-
|
152 |
-
return x
|
153 |
-
|
154 |
-
|
155 |
-
class ResidualConvUnit(nn.Module):
|
156 |
-
"""Residual convolution module.
|
157 |
-
"""
|
158 |
-
|
159 |
-
def __init__(self, features):
|
160 |
-
"""Init.
|
161 |
-
|
162 |
-
Args:
|
163 |
-
features (int): number of features
|
164 |
-
"""
|
165 |
-
super().__init__()
|
166 |
-
|
167 |
-
self.conv1 = nn.Conv2d(
|
168 |
-
features, features, kernel_size=3, stride=1, padding=1, bias=True
|
169 |
-
)
|
170 |
-
|
171 |
-
self.conv2 = nn.Conv2d(
|
172 |
-
features, features, kernel_size=3, stride=1, padding=1, bias=True
|
173 |
-
)
|
174 |
-
|
175 |
-
self.relu = nn.ReLU(inplace=True)
|
176 |
-
|
177 |
-
def forward(self, x):
|
178 |
-
"""Forward pass.
|
179 |
-
|
180 |
-
Args:
|
181 |
-
x (tensor): input
|
182 |
-
|
183 |
-
Returns:
|
184 |
-
tensor: output
|
185 |
-
"""
|
186 |
-
out = self.relu(x)
|
187 |
-
out = self.conv1(out)
|
188 |
-
out = self.relu(out)
|
189 |
-
out = self.conv2(out)
|
190 |
-
|
191 |
-
return out + x
|
192 |
-
|
193 |
-
|
194 |
-
class FeatureFusionBlock(nn.Module):
|
195 |
-
"""Feature fusion block.
|
196 |
-
"""
|
197 |
-
|
198 |
-
def __init__(self, features):
|
199 |
-
"""Init.
|
200 |
-
|
201 |
-
Args:
|
202 |
-
features (int): number of features
|
203 |
-
"""
|
204 |
-
super(FeatureFusionBlock, self).__init__()
|
205 |
-
|
206 |
-
self.resConfUnit1 = ResidualConvUnit(features)
|
207 |
-
self.resConfUnit2 = ResidualConvUnit(features)
|
208 |
-
|
209 |
-
def forward(self, *xs):
|
210 |
-
"""Forward pass.
|
211 |
-
|
212 |
-
Returns:
|
213 |
-
tensor: output
|
214 |
-
"""
|
215 |
-
output = xs[0]
|
216 |
-
|
217 |
-
if len(xs) == 2:
|
218 |
-
output += self.resConfUnit1(xs[1])
|
219 |
-
|
220 |
-
output = self.resConfUnit2(output)
|
221 |
-
|
222 |
-
output = nn.functional.interpolate(
|
223 |
-
output, scale_factor=2, mode="bilinear", align_corners=True
|
224 |
-
)
|
225 |
-
|
226 |
-
return output
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
class ResidualConvUnit_custom(nn.Module):
|
232 |
-
"""Residual convolution module.
|
233 |
-
"""
|
234 |
-
|
235 |
-
def __init__(self, features, activation, bn):
|
236 |
-
"""Init.
|
237 |
-
|
238 |
-
Args:
|
239 |
-
features (int): number of features
|
240 |
-
"""
|
241 |
-
super().__init__()
|
242 |
-
|
243 |
-
self.bn = bn
|
244 |
-
|
245 |
-
self.groups=1
|
246 |
-
|
247 |
-
self.conv1 = nn.Conv2d(
|
248 |
-
features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups
|
249 |
-
)
|
250 |
-
|
251 |
-
self.conv2 = nn.Conv2d(
|
252 |
-
features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups
|
253 |
-
)
|
254 |
-
|
255 |
-
if self.bn==True:
|
256 |
-
self.bn1 = nn.BatchNorm2d(features)
|
257 |
-
self.bn2 = nn.BatchNorm2d(features)
|
258 |
-
|
259 |
-
self.activation = activation
|
260 |
-
|
261 |
-
self.skip_add = nn.quantized.FloatFunctional()
|
262 |
-
|
263 |
-
def forward(self, x):
|
264 |
-
"""Forward pass.
|
265 |
-
|
266 |
-
Args:
|
267 |
-
x (tensor): input
|
268 |
-
|
269 |
-
Returns:
|
270 |
-
tensor: output
|
271 |
-
"""
|
272 |
-
|
273 |
-
out = self.activation(x)
|
274 |
-
out = self.conv1(out)
|
275 |
-
if self.bn==True:
|
276 |
-
out = self.bn1(out)
|
277 |
-
|
278 |
-
out = self.activation(out)
|
279 |
-
out = self.conv2(out)
|
280 |
-
if self.bn==True:
|
281 |
-
out = self.bn2(out)
|
282 |
-
|
283 |
-
if self.groups > 1:
|
284 |
-
out = self.conv_merge(out)
|
285 |
-
|
286 |
-
return self.skip_add.add(out, x)
|
287 |
-
|
288 |
-
# return out + x
|
289 |
-
|
290 |
-
|
291 |
-
class FeatureFusionBlock_custom(nn.Module):
|
292 |
-
"""Feature fusion block.
|
293 |
-
"""
|
294 |
-
|
295 |
-
def __init__(self, features, activation, deconv=False, bn=False, expand=False, align_corners=True):
|
296 |
-
"""Init.
|
297 |
-
|
298 |
-
Args:
|
299 |
-
features (int): number of features
|
300 |
-
"""
|
301 |
-
super(FeatureFusionBlock_custom, self).__init__()
|
302 |
-
|
303 |
-
self.deconv = deconv
|
304 |
-
self.align_corners = align_corners
|
305 |
-
|
306 |
-
self.groups=1
|
307 |
-
|
308 |
-
self.expand = expand
|
309 |
-
out_features = features
|
310 |
-
if self.expand==True:
|
311 |
-
out_features = features//2
|
312 |
-
|
313 |
-
self.out_conv = nn.Conv2d(features, out_features, kernel_size=1, stride=1, padding=0, bias=True, groups=1)
|
314 |
-
|
315 |
-
self.resConfUnit1 = ResidualConvUnit_custom(features, activation, bn)
|
316 |
-
self.resConfUnit2 = ResidualConvUnit_custom(features, activation, bn)
|
317 |
-
|
318 |
-
self.skip_add = nn.quantized.FloatFunctional()
|
319 |
-
|
320 |
-
def forward(self, *xs):
|
321 |
-
"""Forward pass.
|
322 |
-
|
323 |
-
Returns:
|
324 |
-
tensor: output
|
325 |
-
"""
|
326 |
-
output = xs[0]
|
327 |
-
|
328 |
-
if len(xs) == 2:
|
329 |
-
res = self.resConfUnit1(xs[1])
|
330 |
-
output = self.skip_add.add(output, res)
|
331 |
-
# output += res
|
332 |
-
|
333 |
-
output = self.resConfUnit2(output)
|
334 |
-
|
335 |
-
output = nn.functional.interpolate(
|
336 |
-
output, scale_factor=2, mode="bilinear", align_corners=self.align_corners
|
337 |
-
)
|
338 |
-
|
339 |
-
output = self.out_conv(output)
|
340 |
-
|
341 |
-
return output
|
342 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
extralibs/midas/midas/dpt_depth.py
DELETED
@@ -1,110 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
import torch.nn.functional as F
|
4 |
-
|
5 |
-
from .base_model import BaseModel
|
6 |
-
from .blocks import (
|
7 |
-
FeatureFusionBlock,
|
8 |
-
FeatureFusionBlock_custom,
|
9 |
-
Interpolate,
|
10 |
-
_make_encoder,
|
11 |
-
forward_vit,
|
12 |
-
)
|
13 |
-
|
14 |
-
|
15 |
-
def _make_fusion_block(features, use_bn):
|
16 |
-
return FeatureFusionBlock_custom(
|
17 |
-
features,
|
18 |
-
nn.ReLU(False),
|
19 |
-
deconv=False,
|
20 |
-
bn=use_bn,
|
21 |
-
expand=False,
|
22 |
-
align_corners=True,
|
23 |
-
)
|
24 |
-
|
25 |
-
|
26 |
-
class DPT(BaseModel):
|
27 |
-
def __init__(
|
28 |
-
self,
|
29 |
-
head,
|
30 |
-
features=256,
|
31 |
-
backbone="vitb_rn50_384",
|
32 |
-
readout="project",
|
33 |
-
channels_last=False,
|
34 |
-
use_bn=False,
|
35 |
-
):
|
36 |
-
|
37 |
-
super(DPT, self).__init__()
|
38 |
-
|
39 |
-
self.channels_last = channels_last
|
40 |
-
|
41 |
-
hooks = {
|
42 |
-
"vitb_rn50_384": [0, 1, 8, 11],
|
43 |
-
"vitb16_384": [2, 5, 8, 11],
|
44 |
-
"vitl16_384": [5, 11, 17, 23],
|
45 |
-
}
|
46 |
-
|
47 |
-
# Instantiate backbone and reassemble blocks
|
48 |
-
self.pretrained, self.scratch = _make_encoder(
|
49 |
-
backbone,
|
50 |
-
features,
|
51 |
-
False, # Set to true of you want to train from scratch, uses ImageNet weights
|
52 |
-
groups=1,
|
53 |
-
expand=False,
|
54 |
-
exportable=False,
|
55 |
-
hooks=hooks[backbone],
|
56 |
-
use_readout=readout,
|
57 |
-
)
|
58 |
-
|
59 |
-
self.scratch.refinenet1 = _make_fusion_block(features, use_bn)
|
60 |
-
self.scratch.refinenet2 = _make_fusion_block(features, use_bn)
|
61 |
-
self.scratch.refinenet3 = _make_fusion_block(features, use_bn)
|
62 |
-
self.scratch.refinenet4 = _make_fusion_block(features, use_bn)
|
63 |
-
|
64 |
-
self.scratch.output_conv = head
|
65 |
-
|
66 |
-
|
67 |
-
def forward(self, x):
|
68 |
-
if self.channels_last == True:
|
69 |
-
x.contiguous(memory_format=torch.channels_last)
|
70 |
-
|
71 |
-
layer_1, layer_2, layer_3, layer_4 = forward_vit(self.pretrained, x)
|
72 |
-
|
73 |
-
layer_1_rn = self.scratch.layer1_rn(layer_1)
|
74 |
-
layer_2_rn = self.scratch.layer2_rn(layer_2)
|
75 |
-
layer_3_rn = self.scratch.layer3_rn(layer_3)
|
76 |
-
layer_4_rn = self.scratch.layer4_rn(layer_4)
|
77 |
-
|
78 |
-
path_4 = self.scratch.refinenet4(layer_4_rn)
|
79 |
-
path_3 = self.scratch.refinenet3(path_4, layer_3_rn)
|
80 |
-
path_2 = self.scratch.refinenet2(path_3, layer_2_rn)
|
81 |
-
path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
|
82 |
-
|
83 |
-
out = self.scratch.output_conv(path_1)
|
84 |
-
|
85 |
-
return out
|
86 |
-
|
87 |
-
|
88 |
-
class DPTDepthModel(DPT):
|
89 |
-
def __init__(self, path=None, non_negative=True, **kwargs):
|
90 |
-
features = kwargs["features"] if "features" in kwargs else 256
|
91 |
-
|
92 |
-
head = nn.Sequential(
|
93 |
-
nn.Conv2d(features, features // 2, kernel_size=3, stride=1, padding=1),
|
94 |
-
Interpolate(scale_factor=2, mode="bilinear", align_corners=True),
|
95 |
-
nn.Conv2d(features // 2, 32, kernel_size=3, stride=1, padding=1),
|
96 |
-
nn.ReLU(True),
|
97 |
-
nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0),
|
98 |
-
nn.ReLU(True) if non_negative else nn.Identity(),
|
99 |
-
nn.Identity(),
|
100 |
-
)
|
101 |
-
|
102 |
-
super().__init__(head, **kwargs)
|
103 |
-
|
104 |
-
if path is not None:
|
105 |
-
self.load(path)
|
106 |
-
print("Midas depth estimation model loaded.")
|
107 |
-
|
108 |
-
def forward(self, x):
|
109 |
-
return super().forward(x).squeeze(dim=1)
|
110 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
extralibs/midas/midas/midas_net.py
DELETED
@@ -1,76 +0,0 @@
|
|
1 |
-
"""MidashNet: Network for monocular depth estimation trained by mixing several datasets.
|
2 |
-
This file contains code that is adapted from
|
3 |
-
https://github.com/thomasjpfan/pytorch_refinenet/blob/master/pytorch_refinenet/refinenet/refinenet_4cascade.py
|
4 |
-
"""
|
5 |
-
import torch
|
6 |
-
import torch.nn as nn
|
7 |
-
|
8 |
-
from .base_model import BaseModel
|
9 |
-
from .blocks import FeatureFusionBlock, Interpolate, _make_encoder
|
10 |
-
|
11 |
-
|
12 |
-
class MidasNet(BaseModel):
|
13 |
-
"""Network for monocular depth estimation.
|
14 |
-
"""
|
15 |
-
|
16 |
-
def __init__(self, path=None, features=256, non_negative=True):
|
17 |
-
"""Init.
|
18 |
-
|
19 |
-
Args:
|
20 |
-
path (str, optional): Path to saved model. Defaults to None.
|
21 |
-
features (int, optional): Number of features. Defaults to 256.
|
22 |
-
backbone (str, optional): Backbone network for encoder. Defaults to resnet50
|
23 |
-
"""
|
24 |
-
print("Loading weights: ", path)
|
25 |
-
|
26 |
-
super(MidasNet, self).__init__()
|
27 |
-
|
28 |
-
use_pretrained = False if path is None else True
|
29 |
-
|
30 |
-
self.pretrained, self.scratch = _make_encoder(backbone="resnext101_wsl", features=features, use_pretrained=use_pretrained)
|
31 |
-
|
32 |
-
self.scratch.refinenet4 = FeatureFusionBlock(features)
|
33 |
-
self.scratch.refinenet3 = FeatureFusionBlock(features)
|
34 |
-
self.scratch.refinenet2 = FeatureFusionBlock(features)
|
35 |
-
self.scratch.refinenet1 = FeatureFusionBlock(features)
|
36 |
-
|
37 |
-
self.scratch.output_conv = nn.Sequential(
|
38 |
-
nn.Conv2d(features, 128, kernel_size=3, stride=1, padding=1),
|
39 |
-
Interpolate(scale_factor=2, mode="bilinear"),
|
40 |
-
nn.Conv2d(128, 32, kernel_size=3, stride=1, padding=1),
|
41 |
-
nn.ReLU(True),
|
42 |
-
nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0),
|
43 |
-
nn.ReLU(True) if non_negative else nn.Identity(),
|
44 |
-
)
|
45 |
-
|
46 |
-
if path:
|
47 |
-
self.load(path)
|
48 |
-
|
49 |
-
def forward(self, x):
|
50 |
-
"""Forward pass.
|
51 |
-
|
52 |
-
Args:
|
53 |
-
x (tensor): input data (image)
|
54 |
-
|
55 |
-
Returns:
|
56 |
-
tensor: depth
|
57 |
-
"""
|
58 |
-
|
59 |
-
layer_1 = self.pretrained.layer1(x)
|
60 |
-
layer_2 = self.pretrained.layer2(layer_1)
|
61 |
-
layer_3 = self.pretrained.layer3(layer_2)
|
62 |
-
layer_4 = self.pretrained.layer4(layer_3)
|
63 |
-
|
64 |
-
layer_1_rn = self.scratch.layer1_rn(layer_1)
|
65 |
-
layer_2_rn = self.scratch.layer2_rn(layer_2)
|
66 |
-
layer_3_rn = self.scratch.layer3_rn(layer_3)
|
67 |
-
layer_4_rn = self.scratch.layer4_rn(layer_4)
|
68 |
-
|
69 |
-
path_4 = self.scratch.refinenet4(layer_4_rn)
|
70 |
-
path_3 = self.scratch.refinenet3(path_4, layer_3_rn)
|
71 |
-
path_2 = self.scratch.refinenet2(path_3, layer_2_rn)
|
72 |
-
path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
|
73 |
-
|
74 |
-
out = self.scratch.output_conv(path_1)
|
75 |
-
|
76 |
-
return torch.squeeze(out, dim=1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
extralibs/midas/midas/midas_net_custom.py
DELETED
@@ -1,128 +0,0 @@
|
|
1 |
-
"""MidashNet: Network for monocular depth estimation trained by mixing several datasets.
|
2 |
-
This file contains code that is adapted from
|
3 |
-
https://github.com/thomasjpfan/pytorch_refinenet/blob/master/pytorch_refinenet/refinenet/refinenet_4cascade.py
|
4 |
-
"""
|
5 |
-
import torch
|
6 |
-
import torch.nn as nn
|
7 |
-
|
8 |
-
from .base_model import BaseModel
|
9 |
-
from .blocks import FeatureFusionBlock, FeatureFusionBlock_custom, Interpolate, _make_encoder
|
10 |
-
|
11 |
-
|
12 |
-
class MidasNet_small(BaseModel):
|
13 |
-
"""Network for monocular depth estimation.
|
14 |
-
"""
|
15 |
-
|
16 |
-
def __init__(self, path=None, features=64, backbone="efficientnet_lite3", non_negative=True, exportable=True, channels_last=False, align_corners=True,
|
17 |
-
blocks={'expand': True}):
|
18 |
-
"""Init.
|
19 |
-
|
20 |
-
Args:
|
21 |
-
path (str, optional): Path to saved model. Defaults to None.
|
22 |
-
features (int, optional): Number of features. Defaults to 256.
|
23 |
-
backbone (str, optional): Backbone network for encoder. Defaults to resnet50
|
24 |
-
"""
|
25 |
-
print("Loading weights: ", path)
|
26 |
-
|
27 |
-
super(MidasNet_small, self).__init__()
|
28 |
-
|
29 |
-
use_pretrained = False if path else True
|
30 |
-
|
31 |
-
self.channels_last = channels_last
|
32 |
-
self.blocks = blocks
|
33 |
-
self.backbone = backbone
|
34 |
-
|
35 |
-
self.groups = 1
|
36 |
-
|
37 |
-
features1=features
|
38 |
-
features2=features
|
39 |
-
features3=features
|
40 |
-
features4=features
|
41 |
-
self.expand = False
|
42 |
-
if "expand" in self.blocks and self.blocks['expand'] == True:
|
43 |
-
self.expand = True
|
44 |
-
features1=features
|
45 |
-
features2=features*2
|
46 |
-
features3=features*4
|
47 |
-
features4=features*8
|
48 |
-
|
49 |
-
self.pretrained, self.scratch = _make_encoder(self.backbone, features, use_pretrained, groups=self.groups, expand=self.expand, exportable=exportable)
|
50 |
-
|
51 |
-
self.scratch.activation = nn.ReLU(False)
|
52 |
-
|
53 |
-
self.scratch.refinenet4 = FeatureFusionBlock_custom(features4, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners)
|
54 |
-
self.scratch.refinenet3 = FeatureFusionBlock_custom(features3, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners)
|
55 |
-
self.scratch.refinenet2 = FeatureFusionBlock_custom(features2, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners)
|
56 |
-
self.scratch.refinenet1 = FeatureFusionBlock_custom(features1, self.scratch.activation, deconv=False, bn=False, align_corners=align_corners)
|
57 |
-
|
58 |
-
|
59 |
-
self.scratch.output_conv = nn.Sequential(
|
60 |
-
nn.Conv2d(features, features//2, kernel_size=3, stride=1, padding=1, groups=self.groups),
|
61 |
-
Interpolate(scale_factor=2, mode="bilinear"),
|
62 |
-
nn.Conv2d(features//2, 32, kernel_size=3, stride=1, padding=1),
|
63 |
-
self.scratch.activation,
|
64 |
-
nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0),
|
65 |
-
nn.ReLU(True) if non_negative else nn.Identity(),
|
66 |
-
nn.Identity(),
|
67 |
-
)
|
68 |
-
|
69 |
-
if path:
|
70 |
-
self.load(path)
|
71 |
-
|
72 |
-
|
73 |
-
def forward(self, x):
|
74 |
-
"""Forward pass.
|
75 |
-
|
76 |
-
Args:
|
77 |
-
x (tensor): input data (image)
|
78 |
-
|
79 |
-
Returns:
|
80 |
-
tensor: depth
|
81 |
-
"""
|
82 |
-
if self.channels_last==True:
|
83 |
-
print("self.channels_last = ", self.channels_last)
|
84 |
-
x.contiguous(memory_format=torch.channels_last)
|
85 |
-
|
86 |
-
|
87 |
-
layer_1 = self.pretrained.layer1(x)
|
88 |
-
layer_2 = self.pretrained.layer2(layer_1)
|
89 |
-
layer_3 = self.pretrained.layer3(layer_2)
|
90 |
-
layer_4 = self.pretrained.layer4(layer_3)
|
91 |
-
|
92 |
-
layer_1_rn = self.scratch.layer1_rn(layer_1)
|
93 |
-
layer_2_rn = self.scratch.layer2_rn(layer_2)
|
94 |
-
layer_3_rn = self.scratch.layer3_rn(layer_3)
|
95 |
-
layer_4_rn = self.scratch.layer4_rn(layer_4)
|
96 |
-
|
97 |
-
|
98 |
-
path_4 = self.scratch.refinenet4(layer_4_rn)
|
99 |
-
path_3 = self.scratch.refinenet3(path_4, layer_3_rn)
|
100 |
-
path_2 = self.scratch.refinenet2(path_3, layer_2_rn)
|
101 |
-
path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
|
102 |
-
|
103 |
-
out = self.scratch.output_conv(path_1)
|
104 |
-
|
105 |
-
return torch.squeeze(out, dim=1)
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
def fuse_model(m):
|
110 |
-
prev_previous_type = nn.Identity()
|
111 |
-
prev_previous_name = ''
|
112 |
-
previous_type = nn.Identity()
|
113 |
-
previous_name = ''
|
114 |
-
for name, module in m.named_modules():
|
115 |
-
if prev_previous_type == nn.Conv2d and previous_type == nn.BatchNorm2d and type(module) == nn.ReLU:
|
116 |
-
# print("FUSED ", prev_previous_name, previous_name, name)
|
117 |
-
torch.quantization.fuse_modules(m, [prev_previous_name, previous_name, name], inplace=True)
|
118 |
-
elif prev_previous_type == nn.Conv2d and previous_type == nn.BatchNorm2d:
|
119 |
-
# print("FUSED ", prev_previous_name, previous_name)
|
120 |
-
torch.quantization.fuse_modules(m, [prev_previous_name, previous_name], inplace=True)
|
121 |
-
# elif previous_type == nn.Conv2d and type(module) == nn.ReLU:
|
122 |
-
# print("FUSED ", previous_name, name)
|
123 |
-
# torch.quantization.fuse_modules(m, [previous_name, name], inplace=True)
|
124 |
-
|
125 |
-
prev_previous_type = previous_type
|
126 |
-
prev_previous_name = previous_name
|
127 |
-
previous_type = type(module)
|
128 |
-
previous_name = name
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
extralibs/midas/midas/transforms.py
DELETED
@@ -1,234 +0,0 @@
|
|
1 |
-
import numpy as np
|
2 |
-
import cv2
|
3 |
-
import math
|
4 |
-
|
5 |
-
|
6 |
-
def apply_min_size(sample, size, image_interpolation_method=cv2.INTER_AREA):
|
7 |
-
"""Rezise the sample to ensure the given size. Keeps aspect ratio.
|
8 |
-
|
9 |
-
Args:
|
10 |
-
sample (dict): sample
|
11 |
-
size (tuple): image size
|
12 |
-
|
13 |
-
Returns:
|
14 |
-
tuple: new size
|
15 |
-
"""
|
16 |
-
shape = list(sample["disparity"].shape)
|
17 |
-
|
18 |
-
if shape[0] >= size[0] and shape[1] >= size[1]:
|
19 |
-
return sample
|
20 |
-
|
21 |
-
scale = [0, 0]
|
22 |
-
scale[0] = size[0] / shape[0]
|
23 |
-
scale[1] = size[1] / shape[1]
|
24 |
-
|
25 |
-
scale = max(scale)
|
26 |
-
|
27 |
-
shape[0] = math.ceil(scale * shape[0])
|
28 |
-
shape[1] = math.ceil(scale * shape[1])
|
29 |
-
|
30 |
-
# resize
|
31 |
-
sample["image"] = cv2.resize(
|
32 |
-
sample["image"], tuple(shape[::-1]), interpolation=image_interpolation_method
|
33 |
-
)
|
34 |
-
|
35 |
-
sample["disparity"] = cv2.resize(
|
36 |
-
sample["disparity"], tuple(shape[::-1]), interpolation=cv2.INTER_NEAREST
|
37 |
-
)
|
38 |
-
sample["mask"] = cv2.resize(
|
39 |
-
sample["mask"].astype(np.float32),
|
40 |
-
tuple(shape[::-1]),
|
41 |
-
interpolation=cv2.INTER_NEAREST,
|
42 |
-
)
|
43 |
-
sample["mask"] = sample["mask"].astype(bool)
|
44 |
-
|
45 |
-
return tuple(shape)
|
46 |
-
|
47 |
-
|
48 |
-
class Resize(object):
|
49 |
-
"""Resize sample to given size (width, height).
|
50 |
-
"""
|
51 |
-
|
52 |
-
def __init__(
|
53 |
-
self,
|
54 |
-
width,
|
55 |
-
height,
|
56 |
-
resize_target=True,
|
57 |
-
keep_aspect_ratio=False,
|
58 |
-
ensure_multiple_of=1,
|
59 |
-
resize_method="lower_bound",
|
60 |
-
image_interpolation_method=cv2.INTER_AREA,
|
61 |
-
):
|
62 |
-
"""Init.
|
63 |
-
|
64 |
-
Args:
|
65 |
-
width (int): desired output width
|
66 |
-
height (int): desired output height
|
67 |
-
resize_target (bool, optional):
|
68 |
-
True: Resize the full sample (image, mask, target).
|
69 |
-
False: Resize image only.
|
70 |
-
Defaults to True.
|
71 |
-
keep_aspect_ratio (bool, optional):
|
72 |
-
True: Keep the aspect ratio of the input sample.
|
73 |
-
Output sample might not have the given width and height, and
|
74 |
-
resize behaviour depends on the parameter 'resize_method'.
|
75 |
-
Defaults to False.
|
76 |
-
ensure_multiple_of (int, optional):
|
77 |
-
Output width and height is constrained to be multiple of this parameter.
|
78 |
-
Defaults to 1.
|
79 |
-
resize_method (str, optional):
|
80 |
-
"lower_bound": Output will be at least as large as the given size.
|
81 |
-
"upper_bound": Output will be at max as large as the given size. (Output size might be smaller than given size.)
|
82 |
-
"minimal": Scale as least as possible. (Output size might be smaller than given size.)
|
83 |
-
Defaults to "lower_bound".
|
84 |
-
"""
|
85 |
-
self.__width = width
|
86 |
-
self.__height = height
|
87 |
-
|
88 |
-
self.__resize_target = resize_target
|
89 |
-
self.__keep_aspect_ratio = keep_aspect_ratio
|
90 |
-
self.__multiple_of = ensure_multiple_of
|
91 |
-
self.__resize_method = resize_method
|
92 |
-
self.__image_interpolation_method = image_interpolation_method
|
93 |
-
|
94 |
-
def constrain_to_multiple_of(self, x, min_val=0, max_val=None):
|
95 |
-
y = (np.round(x / self.__multiple_of) * self.__multiple_of).astype(int)
|
96 |
-
|
97 |
-
if max_val is not None and y > max_val:
|
98 |
-
y = (np.floor(x / self.__multiple_of) * self.__multiple_of).astype(int)
|
99 |
-
|
100 |
-
if y < min_val:
|
101 |
-
y = (np.ceil(x / self.__multiple_of) * self.__multiple_of).astype(int)
|
102 |
-
|
103 |
-
return y
|
104 |
-
|
105 |
-
def get_size(self, width, height):
|
106 |
-
# determine new height and width
|
107 |
-
scale_height = self.__height / height
|
108 |
-
scale_width = self.__width / width
|
109 |
-
|
110 |
-
if self.__keep_aspect_ratio:
|
111 |
-
if self.__resize_method == "lower_bound":
|
112 |
-
# scale such that output size is lower bound
|
113 |
-
if scale_width > scale_height:
|
114 |
-
# fit width
|
115 |
-
scale_height = scale_width
|
116 |
-
else:
|
117 |
-
# fit height
|
118 |
-
scale_width = scale_height
|
119 |
-
elif self.__resize_method == "upper_bound":
|
120 |
-
# scale such that output size is upper bound
|
121 |
-
if scale_width < scale_height:
|
122 |
-
# fit width
|
123 |
-
scale_height = scale_width
|
124 |
-
else:
|
125 |
-
# fit height
|
126 |
-
scale_width = scale_height
|
127 |
-
elif self.__resize_method == "minimal":
|
128 |
-
# scale as least as possbile
|
129 |
-
if abs(1 - scale_width) < abs(1 - scale_height):
|
130 |
-
# fit width
|
131 |
-
scale_height = scale_width
|
132 |
-
else:
|
133 |
-
# fit height
|
134 |
-
scale_width = scale_height
|
135 |
-
else:
|
136 |
-
raise ValueError(
|
137 |
-
f"resize_method {self.__resize_method} not implemented"
|
138 |
-
)
|
139 |
-
|
140 |
-
if self.__resize_method == "lower_bound":
|
141 |
-
new_height = self.constrain_to_multiple_of(
|
142 |
-
scale_height * height, min_val=self.__height
|
143 |
-
)
|
144 |
-
new_width = self.constrain_to_multiple_of(
|
145 |
-
scale_width * width, min_val=self.__width
|
146 |
-
)
|
147 |
-
elif self.__resize_method == "upper_bound":
|
148 |
-
new_height = self.constrain_to_multiple_of(
|
149 |
-
scale_height * height, max_val=self.__height
|
150 |
-
)
|
151 |
-
new_width = self.constrain_to_multiple_of(
|
152 |
-
scale_width * width, max_val=self.__width
|
153 |
-
)
|
154 |
-
elif self.__resize_method == "minimal":
|
155 |
-
new_height = self.constrain_to_multiple_of(scale_height * height)
|
156 |
-
new_width = self.constrain_to_multiple_of(scale_width * width)
|
157 |
-
else:
|
158 |
-
raise ValueError(f"resize_method {self.__resize_method} not implemented")
|
159 |
-
|
160 |
-
return (new_width, new_height)
|
161 |
-
|
162 |
-
def __call__(self, sample):
|
163 |
-
width, height = self.get_size(
|
164 |
-
sample["image"].shape[1], sample["image"].shape[0]
|
165 |
-
)
|
166 |
-
|
167 |
-
# resize sample
|
168 |
-
sample["image"] = cv2.resize(
|
169 |
-
sample["image"],
|
170 |
-
(width, height),
|
171 |
-
interpolation=self.__image_interpolation_method,
|
172 |
-
)
|
173 |
-
|
174 |
-
if self.__resize_target:
|
175 |
-
if "disparity" in sample:
|
176 |
-
sample["disparity"] = cv2.resize(
|
177 |
-
sample["disparity"],
|
178 |
-
(width, height),
|
179 |
-
interpolation=cv2.INTER_NEAREST,
|
180 |
-
)
|
181 |
-
|
182 |
-
if "depth" in sample:
|
183 |
-
sample["depth"] = cv2.resize(
|
184 |
-
sample["depth"], (width, height), interpolation=cv2.INTER_NEAREST
|
185 |
-
)
|
186 |
-
|
187 |
-
sample["mask"] = cv2.resize(
|
188 |
-
sample["mask"].astype(np.float32),
|
189 |
-
(width, height),
|
190 |
-
interpolation=cv2.INTER_NEAREST,
|
191 |
-
)
|
192 |
-
sample["mask"] = sample["mask"].astype(bool)
|
193 |
-
|
194 |
-
return sample
|
195 |
-
|
196 |
-
|
197 |
-
class NormalizeImage(object):
|
198 |
-
"""Normlize image by given mean and std.
|
199 |
-
"""
|
200 |
-
|
201 |
-
def __init__(self, mean, std):
|
202 |
-
self.__mean = mean
|
203 |
-
self.__std = std
|
204 |
-
|
205 |
-
def __call__(self, sample):
|
206 |
-
sample["image"] = (sample["image"] - self.__mean) / self.__std
|
207 |
-
|
208 |
-
return sample
|
209 |
-
|
210 |
-
|
211 |
-
class PrepareForNet(object):
|
212 |
-
"""Prepare sample for usage as network input.
|
213 |
-
"""
|
214 |
-
|
215 |
-
def __init__(self):
|
216 |
-
pass
|
217 |
-
|
218 |
-
def __call__(self, sample):
|
219 |
-
image = np.transpose(sample["image"], (2, 0, 1))
|
220 |
-
sample["image"] = np.ascontiguousarray(image).astype(np.float32)
|
221 |
-
|
222 |
-
if "mask" in sample:
|
223 |
-
sample["mask"] = sample["mask"].astype(np.float32)
|
224 |
-
sample["mask"] = np.ascontiguousarray(sample["mask"])
|
225 |
-
|
226 |
-
if "disparity" in sample:
|
227 |
-
disparity = sample["disparity"].astype(np.float32)
|
228 |
-
sample["disparity"] = np.ascontiguousarray(disparity)
|
229 |
-
|
230 |
-
if "depth" in sample:
|
231 |
-
depth = sample["depth"].astype(np.float32)
|
232 |
-
sample["depth"] = np.ascontiguousarray(depth)
|
233 |
-
|
234 |
-
return sample
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
extralibs/midas/midas/vit.py
DELETED
@@ -1,489 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
import timm
|
4 |
-
import types
|
5 |
-
import math
|
6 |
-
import torch.nn.functional as F
|
7 |
-
|
8 |
-
|
9 |
-
class Slice(nn.Module):
|
10 |
-
def __init__(self, start_index=1):
|
11 |
-
super(Slice, self).__init__()
|
12 |
-
self.start_index = start_index
|
13 |
-
|
14 |
-
def forward(self, x):
|
15 |
-
return x[:, self.start_index :]
|
16 |
-
|
17 |
-
|
18 |
-
class AddReadout(nn.Module):
|
19 |
-
def __init__(self, start_index=1):
|
20 |
-
super(AddReadout, self).__init__()
|
21 |
-
self.start_index = start_index
|
22 |
-
|
23 |
-
def forward(self, x):
|
24 |
-
if self.start_index == 2:
|
25 |
-
readout = (x[:, 0] + x[:, 1]) / 2
|
26 |
-
else:
|
27 |
-
readout = x[:, 0]
|
28 |
-
return x[:, self.start_index :] + readout.unsqueeze(1)
|
29 |
-
|
30 |
-
|
31 |
-
class ProjectReadout(nn.Module):
|
32 |
-
def __init__(self, in_features, start_index=1):
|
33 |
-
super(ProjectReadout, self).__init__()
|
34 |
-
self.start_index = start_index
|
35 |
-
|
36 |
-
self.project = nn.Sequential(nn.Linear(2 * in_features, in_features), nn.GELU())
|
37 |
-
|
38 |
-
def forward(self, x):
|
39 |
-
readout = x[:, 0].unsqueeze(1).expand_as(x[:, self.start_index :])
|
40 |
-
features = torch.cat((x[:, self.start_index :], readout), -1)
|
41 |
-
|
42 |
-
return self.project(features)
|
43 |
-
|
44 |
-
|
45 |
-
class Transpose(nn.Module):
|
46 |
-
def __init__(self, dim0, dim1):
|
47 |
-
super(Transpose, self).__init__()
|
48 |
-
self.dim0 = dim0
|
49 |
-
self.dim1 = dim1
|
50 |
-
|
51 |
-
def forward(self, x):
|
52 |
-
x = x.transpose(self.dim0, self.dim1)
|
53 |
-
return x
|
54 |
-
|
55 |
-
|
56 |
-
activations = {}
|
57 |
-
def forward_vit(pretrained, x):
|
58 |
-
b, c, h, w = x.shape
|
59 |
-
|
60 |
-
glob = pretrained.model.forward_flex(x)
|
61 |
-
pretrained.activations = activations
|
62 |
-
|
63 |
-
layer_1 = pretrained.activations["1"]
|
64 |
-
layer_2 = pretrained.activations["2"]
|
65 |
-
layer_3 = pretrained.activations["3"]
|
66 |
-
layer_4 = pretrained.activations["4"]
|
67 |
-
|
68 |
-
layer_1 = pretrained.act_postprocess1[0:2](layer_1)
|
69 |
-
layer_2 = pretrained.act_postprocess2[0:2](layer_2)
|
70 |
-
layer_3 = pretrained.act_postprocess3[0:2](layer_3)
|
71 |
-
layer_4 = pretrained.act_postprocess4[0:2](layer_4)
|
72 |
-
|
73 |
-
unflatten = nn.Sequential(
|
74 |
-
nn.Unflatten(
|
75 |
-
2,
|
76 |
-
torch.Size(
|
77 |
-
[
|
78 |
-
h // pretrained.model.patch_size[1],
|
79 |
-
w // pretrained.model.patch_size[0],
|
80 |
-
]
|
81 |
-
),
|
82 |
-
)
|
83 |
-
)
|
84 |
-
|
85 |
-
if layer_1.ndim == 3:
|
86 |
-
layer_1 = unflatten(layer_1)
|
87 |
-
if layer_2.ndim == 3:
|
88 |
-
layer_2 = unflatten(layer_2)
|
89 |
-
if layer_3.ndim == 3:
|
90 |
-
layer_3 = unflatten(layer_3)
|
91 |
-
if layer_4.ndim == 3:
|
92 |
-
layer_4 = unflatten(layer_4)
|
93 |
-
|
94 |
-
layer_1 = pretrained.act_postprocess1[3 : len(pretrained.act_postprocess1)](layer_1)
|
95 |
-
layer_2 = pretrained.act_postprocess2[3 : len(pretrained.act_postprocess2)](layer_2)
|
96 |
-
layer_3 = pretrained.act_postprocess3[3 : len(pretrained.act_postprocess3)](layer_3)
|
97 |
-
layer_4 = pretrained.act_postprocess4[3 : len(pretrained.act_postprocess4)](layer_4)
|
98 |
-
|
99 |
-
return layer_1, layer_2, layer_3, layer_4
|
100 |
-
|
101 |
-
|
102 |
-
def _resize_pos_embed(self, posemb, gs_h, gs_w):
|
103 |
-
posemb_tok, posemb_grid = (
|
104 |
-
posemb[:, : self.start_index],
|
105 |
-
posemb[0, self.start_index :],
|
106 |
-
)
|
107 |
-
|
108 |
-
gs_old = int(math.sqrt(len(posemb_grid)))
|
109 |
-
|
110 |
-
posemb_grid = posemb_grid.reshape(1, gs_old, gs_old, -1).permute(0, 3, 1, 2)
|
111 |
-
posemb_grid = F.interpolate(posemb_grid, size=(gs_h, gs_w), mode="bilinear")
|
112 |
-
posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, gs_h * gs_w, -1)
|
113 |
-
|
114 |
-
posemb = torch.cat([posemb_tok, posemb_grid], dim=1)
|
115 |
-
|
116 |
-
return posemb
|
117 |
-
|
118 |
-
|
119 |
-
def forward_flex(self, x):
|
120 |
-
b, c, h, w = x.shape
|
121 |
-
|
122 |
-
pos_embed = self._resize_pos_embed(
|
123 |
-
self.pos_embed, h // self.patch_size[1], w // self.patch_size[0]
|
124 |
-
)
|
125 |
-
|
126 |
-
B = x.shape[0]
|
127 |
-
|
128 |
-
if hasattr(self.patch_embed, "backbone"):
|
129 |
-
x = self.patch_embed.backbone(x)
|
130 |
-
if isinstance(x, (list, tuple)):
|
131 |
-
x = x[-1] # last feature if backbone outputs list/tuple of features
|
132 |
-
|
133 |
-
x = self.patch_embed.proj(x).flatten(2).transpose(1, 2)
|
134 |
-
|
135 |
-
if getattr(self, "dist_token", None) is not None:
|
136 |
-
cls_tokens = self.cls_token.expand(
|
137 |
-
B, -1, -1
|
138 |
-
) # stole cls_tokens impl from Phil Wang, thanks
|
139 |
-
dist_token = self.dist_token.expand(B, -1, -1)
|
140 |
-
x = torch.cat((cls_tokens, dist_token, x), dim=1)
|
141 |
-
else:
|
142 |
-
cls_tokens = self.cls_token.expand(
|
143 |
-
B, -1, -1
|
144 |
-
) # stole cls_tokens impl from Phil Wang, thanks
|
145 |
-
x = torch.cat((cls_tokens, x), dim=1)
|
146 |
-
|
147 |
-
x = x + pos_embed
|
148 |
-
x = self.pos_drop(x)
|
149 |
-
|
150 |
-
for blk in self.blocks:
|
151 |
-
x = blk(x)
|
152 |
-
|
153 |
-
x = self.norm(x)
|
154 |
-
|
155 |
-
return x
|
156 |
-
|
157 |
-
|
158 |
-
def get_activation(name):
|
159 |
-
def hook(model, input, output):
|
160 |
-
activations[name] = output
|
161 |
-
return hook
|
162 |
-
|
163 |
-
|
164 |
-
def get_readout_oper(vit_features, features, use_readout, start_index=1):
|
165 |
-
if use_readout == "ignore":
|
166 |
-
readout_oper = [Slice(start_index)] * len(features)
|
167 |
-
elif use_readout == "add":
|
168 |
-
readout_oper = [AddReadout(start_index)] * len(features)
|
169 |
-
elif use_readout == "project":
|
170 |
-
readout_oper = [
|
171 |
-
ProjectReadout(vit_features, start_index) for out_feat in features
|
172 |
-
]
|
173 |
-
else:
|
174 |
-
assert (
|
175 |
-
False
|
176 |
-
), "wrong operation for readout token, use_readout can be 'ignore', 'add', or 'project'"
|
177 |
-
|
178 |
-
return readout_oper
|
179 |
-
|
180 |
-
|
181 |
-
def _make_vit_b16_backbone(
|
182 |
-
model,
|
183 |
-
features=[96, 192, 384, 768],
|
184 |
-
size=[384, 384],
|
185 |
-
hooks=[2, 5, 8, 11],
|
186 |
-
vit_features=768,
|
187 |
-
use_readout="ignore",
|
188 |
-
start_index=1,
|
189 |
-
):
|
190 |
-
pretrained = nn.Module()
|
191 |
-
|
192 |
-
pretrained.model = model
|
193 |
-
pretrained.model.blocks[hooks[0]].register_forward_hook(get_activation("1"))
|
194 |
-
pretrained.model.blocks[hooks[1]].register_forward_hook(get_activation("2"))
|
195 |
-
pretrained.model.blocks[hooks[2]].register_forward_hook(get_activation("3"))
|
196 |
-
pretrained.model.blocks[hooks[3]].register_forward_hook(get_activation("4"))
|
197 |
-
|
198 |
-
pretrained.activations = activations
|
199 |
-
|
200 |
-
readout_oper = get_readout_oper(vit_features, features, use_readout, start_index)
|
201 |
-
|
202 |
-
# 32, 48, 136, 384
|
203 |
-
pretrained.act_postprocess1 = nn.Sequential(
|
204 |
-
readout_oper[0],
|
205 |
-
Transpose(1, 2),
|
206 |
-
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
207 |
-
nn.Conv2d(
|
208 |
-
in_channels=vit_features,
|
209 |
-
out_channels=features[0],
|
210 |
-
kernel_size=1,
|
211 |
-
stride=1,
|
212 |
-
padding=0,
|
213 |
-
),
|
214 |
-
nn.ConvTranspose2d(
|
215 |
-
in_channels=features[0],
|
216 |
-
out_channels=features[0],
|
217 |
-
kernel_size=4,
|
218 |
-
stride=4,
|
219 |
-
padding=0,
|
220 |
-
bias=True,
|
221 |
-
dilation=1,
|
222 |
-
groups=1,
|
223 |
-
),
|
224 |
-
)
|
225 |
-
|
226 |
-
pretrained.act_postprocess2 = nn.Sequential(
|
227 |
-
readout_oper[1],
|
228 |
-
Transpose(1, 2),
|
229 |
-
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
230 |
-
nn.Conv2d(
|
231 |
-
in_channels=vit_features,
|
232 |
-
out_channels=features[1],
|
233 |
-
kernel_size=1,
|
234 |
-
stride=1,
|
235 |
-
padding=0,
|
236 |
-
),
|
237 |
-
nn.ConvTranspose2d(
|
238 |
-
in_channels=features[1],
|
239 |
-
out_channels=features[1],
|
240 |
-
kernel_size=2,
|
241 |
-
stride=2,
|
242 |
-
padding=0,
|
243 |
-
bias=True,
|
244 |
-
dilation=1,
|
245 |
-
groups=1,
|
246 |
-
),
|
247 |
-
)
|
248 |
-
|
249 |
-
pretrained.act_postprocess3 = nn.Sequential(
|
250 |
-
readout_oper[2],
|
251 |
-
Transpose(1, 2),
|
252 |
-
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
253 |
-
nn.Conv2d(
|
254 |
-
in_channels=vit_features,
|
255 |
-
out_channels=features[2],
|
256 |
-
kernel_size=1,
|
257 |
-
stride=1,
|
258 |
-
padding=0,
|
259 |
-
),
|
260 |
-
)
|
261 |
-
|
262 |
-
pretrained.act_postprocess4 = nn.Sequential(
|
263 |
-
readout_oper[3],
|
264 |
-
Transpose(1, 2),
|
265 |
-
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
266 |
-
nn.Conv2d(
|
267 |
-
in_channels=vit_features,
|
268 |
-
out_channels=features[3],
|
269 |
-
kernel_size=1,
|
270 |
-
stride=1,
|
271 |
-
padding=0,
|
272 |
-
),
|
273 |
-
nn.Conv2d(
|
274 |
-
in_channels=features[3],
|
275 |
-
out_channels=features[3],
|
276 |
-
kernel_size=3,
|
277 |
-
stride=2,
|
278 |
-
padding=1,
|
279 |
-
),
|
280 |
-
)
|
281 |
-
|
282 |
-
pretrained.model.start_index = start_index
|
283 |
-
pretrained.model.patch_size = [16, 16]
|
284 |
-
|
285 |
-
# We inject this function into the VisionTransformer instances so that
|
286 |
-
# we can use it with interpolated position embeddings without modifying the library source.
|
287 |
-
pretrained.model.forward_flex = types.MethodType(forward_flex, pretrained.model)
|
288 |
-
pretrained.model._resize_pos_embed = types.MethodType(
|
289 |
-
_resize_pos_embed, pretrained.model
|
290 |
-
)
|
291 |
-
|
292 |
-
return pretrained
|
293 |
-
|
294 |
-
|
295 |
-
def _make_pretrained_vitl16_384(pretrained, use_readout="ignore", hooks=None):
|
296 |
-
model = timm.create_model("vit_large_patch16_384", pretrained=pretrained)
|
297 |
-
|
298 |
-
hooks = [5, 11, 17, 23] if hooks == None else hooks
|
299 |
-
return _make_vit_b16_backbone(
|
300 |
-
model,
|
301 |
-
features=[256, 512, 1024, 1024],
|
302 |
-
hooks=hooks,
|
303 |
-
vit_features=1024,
|
304 |
-
use_readout=use_readout,
|
305 |
-
)
|
306 |
-
|
307 |
-
|
308 |
-
def _make_pretrained_vitb16_384(pretrained, use_readout="ignore", hooks=None):
|
309 |
-
model = timm.create_model("vit_base_patch16_384", pretrained=pretrained)
|
310 |
-
|
311 |
-
hooks = [2, 5, 8, 11] if hooks == None else hooks
|
312 |
-
return _make_vit_b16_backbone(
|
313 |
-
model, features=[96, 192, 384, 768], hooks=hooks, use_readout=use_readout
|
314 |
-
)
|
315 |
-
|
316 |
-
|
317 |
-
def _make_pretrained_deitb16_384(pretrained, use_readout="ignore", hooks=None):
|
318 |
-
model = timm.create_model("vit_deit_base_patch16_384", pretrained=pretrained)
|
319 |
-
|
320 |
-
hooks = [2, 5, 8, 11] if hooks == None else hooks
|
321 |
-
return _make_vit_b16_backbone(
|
322 |
-
model, features=[96, 192, 384, 768], hooks=hooks, use_readout=use_readout
|
323 |
-
)
|
324 |
-
|
325 |
-
|
326 |
-
def _make_pretrained_deitb16_distil_384(pretrained, use_readout="ignore", hooks=None):
|
327 |
-
model = timm.create_model(
|
328 |
-
"vit_deit_base_distilled_patch16_384", pretrained=pretrained
|
329 |
-
)
|
330 |
-
|
331 |
-
hooks = [2, 5, 8, 11] if hooks == None else hooks
|
332 |
-
return _make_vit_b16_backbone(
|
333 |
-
model,
|
334 |
-
features=[96, 192, 384, 768],
|
335 |
-
hooks=hooks,
|
336 |
-
use_readout=use_readout,
|
337 |
-
start_index=2,
|
338 |
-
)
|
339 |
-
|
340 |
-
|
341 |
-
def _make_vit_b_rn50_backbone(
|
342 |
-
model,
|
343 |
-
features=[256, 512, 768, 768],
|
344 |
-
size=[384, 384],
|
345 |
-
hooks=[0, 1, 8, 11],
|
346 |
-
vit_features=768,
|
347 |
-
use_vit_only=False,
|
348 |
-
use_readout="ignore",
|
349 |
-
start_index=1,
|
350 |
-
):
|
351 |
-
pretrained = nn.Module()
|
352 |
-
|
353 |
-
pretrained.model = model
|
354 |
-
|
355 |
-
if use_vit_only == True:
|
356 |
-
pretrained.model.blocks[hooks[0]].register_forward_hook(get_activation("1"))
|
357 |
-
pretrained.model.blocks[hooks[1]].register_forward_hook(get_activation("2"))
|
358 |
-
else:
|
359 |
-
pretrained.model.patch_embed.backbone.stages[0].register_forward_hook(
|
360 |
-
get_activation("1")
|
361 |
-
)
|
362 |
-
pretrained.model.patch_embed.backbone.stages[1].register_forward_hook(
|
363 |
-
get_activation("2")
|
364 |
-
)
|
365 |
-
|
366 |
-
pretrained.model.blocks[hooks[2]].register_forward_hook(get_activation("3"))
|
367 |
-
pretrained.model.blocks[hooks[3]].register_forward_hook(get_activation("4"))
|
368 |
-
|
369 |
-
pretrained.activations = activations
|
370 |
-
|
371 |
-
readout_oper = get_readout_oper(vit_features, features, use_readout, start_index)
|
372 |
-
|
373 |
-
if use_vit_only == True:
|
374 |
-
pretrained.act_postprocess1 = nn.Sequential(
|
375 |
-
readout_oper[0],
|
376 |
-
Transpose(1, 2),
|
377 |
-
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
378 |
-
nn.Conv2d(
|
379 |
-
in_channels=vit_features,
|
380 |
-
out_channels=features[0],
|
381 |
-
kernel_size=1,
|
382 |
-
stride=1,
|
383 |
-
padding=0,
|
384 |
-
),
|
385 |
-
nn.ConvTranspose2d(
|
386 |
-
in_channels=features[0],
|
387 |
-
out_channels=features[0],
|
388 |
-
kernel_size=4,
|
389 |
-
stride=4,
|
390 |
-
padding=0,
|
391 |
-
bias=True,
|
392 |
-
dilation=1,
|
393 |
-
groups=1,
|
394 |
-
),
|
395 |
-
)
|
396 |
-
|
397 |
-
pretrained.act_postprocess2 = nn.Sequential(
|
398 |
-
readout_oper[1],
|
399 |
-
Transpose(1, 2),
|
400 |
-
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
401 |
-
nn.Conv2d(
|
402 |
-
in_channels=vit_features,
|
403 |
-
out_channels=features[1],
|
404 |
-
kernel_size=1,
|
405 |
-
stride=1,
|
406 |
-
padding=0,
|
407 |
-
),
|
408 |
-
nn.ConvTranspose2d(
|
409 |
-
in_channels=features[1],
|
410 |
-
out_channels=features[1],
|
411 |
-
kernel_size=2,
|
412 |
-
stride=2,
|
413 |
-
padding=0,
|
414 |
-
bias=True,
|
415 |
-
dilation=1,
|
416 |
-
groups=1,
|
417 |
-
),
|
418 |
-
)
|
419 |
-
else:
|
420 |
-
pretrained.act_postprocess1 = nn.Sequential(
|
421 |
-
nn.Identity(), nn.Identity(), nn.Identity()
|
422 |
-
)
|
423 |
-
pretrained.act_postprocess2 = nn.Sequential(
|
424 |
-
nn.Identity(), nn.Identity(), nn.Identity()
|
425 |
-
)
|
426 |
-
|
427 |
-
pretrained.act_postprocess3 = nn.Sequential(
|
428 |
-
readout_oper[2],
|
429 |
-
Transpose(1, 2),
|
430 |
-
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
431 |
-
nn.Conv2d(
|
432 |
-
in_channels=vit_features,
|
433 |
-
out_channels=features[2],
|
434 |
-
kernel_size=1,
|
435 |
-
stride=1,
|
436 |
-
padding=0,
|
437 |
-
),
|
438 |
-
)
|
439 |
-
|
440 |
-
pretrained.act_postprocess4 = nn.Sequential(
|
441 |
-
readout_oper[3],
|
442 |
-
Transpose(1, 2),
|
443 |
-
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
444 |
-
nn.Conv2d(
|
445 |
-
in_channels=vit_features,
|
446 |
-
out_channels=features[3],
|
447 |
-
kernel_size=1,
|
448 |
-
stride=1,
|
449 |
-
padding=0,
|
450 |
-
),
|
451 |
-
nn.Conv2d(
|
452 |
-
in_channels=features[3],
|
453 |
-
out_channels=features[3],
|
454 |
-
kernel_size=3,
|
455 |
-
stride=2,
|
456 |
-
padding=1,
|
457 |
-
),
|
458 |
-
)
|
459 |
-
|
460 |
-
pretrained.model.start_index = start_index
|
461 |
-
pretrained.model.patch_size = [16, 16]
|
462 |
-
|
463 |
-
# We inject this function into the VisionTransformer instances so that
|
464 |
-
# we can use it with interpolated position embeddings without modifying the library source.
|
465 |
-
pretrained.model.forward_flex = types.MethodType(forward_flex, pretrained.model)
|
466 |
-
|
467 |
-
# We inject this function into the VisionTransformer instances so that
|
468 |
-
# we can use it with interpolated position embeddings without modifying the library source.
|
469 |
-
pretrained.model._resize_pos_embed = types.MethodType(
|
470 |
-
_resize_pos_embed, pretrained.model
|
471 |
-
)
|
472 |
-
|
473 |
-
return pretrained
|
474 |
-
|
475 |
-
|
476 |
-
def _make_pretrained_vitb_rn50_384(
|
477 |
-
pretrained, use_readout="ignore", hooks=None, use_vit_only=False
|
478 |
-
):
|
479 |
-
model = timm.create_model("vit_base_resnet50_384", pretrained=pretrained)
|
480 |
-
|
481 |
-
hooks = [0, 1, 8, 11] if hooks == None else hooks
|
482 |
-
return _make_vit_b_rn50_backbone(
|
483 |
-
model,
|
484 |
-
features=[256, 512, 768, 768],
|
485 |
-
size=[384, 384],
|
486 |
-
hooks=hooks,
|
487 |
-
use_vit_only=use_vit_only,
|
488 |
-
use_readout=use_readout,
|
489 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
extralibs/midas/utils.py
DELETED
@@ -1,189 +0,0 @@
|
|
1 |
-
"""Utils for monoDepth."""
|
2 |
-
import sys
|
3 |
-
import re
|
4 |
-
import numpy as np
|
5 |
-
import cv2
|
6 |
-
import torch
|
7 |
-
|
8 |
-
|
9 |
-
def read_pfm(path):
|
10 |
-
"""Read pfm file.
|
11 |
-
|
12 |
-
Args:
|
13 |
-
path (str): path to file
|
14 |
-
|
15 |
-
Returns:
|
16 |
-
tuple: (data, scale)
|
17 |
-
"""
|
18 |
-
with open(path, "rb") as file:
|
19 |
-
|
20 |
-
color = None
|
21 |
-
width = None
|
22 |
-
height = None
|
23 |
-
scale = None
|
24 |
-
endian = None
|
25 |
-
|
26 |
-
header = file.readline().rstrip()
|
27 |
-
if header.decode("ascii") == "PF":
|
28 |
-
color = True
|
29 |
-
elif header.decode("ascii") == "Pf":
|
30 |
-
color = False
|
31 |
-
else:
|
32 |
-
raise Exception("Not a PFM file: " + path)
|
33 |
-
|
34 |
-
dim_match = re.match(r"^(\d+)\s(\d+)\s$", file.readline().decode("ascii"))
|
35 |
-
if dim_match:
|
36 |
-
width, height = list(map(int, dim_match.groups()))
|
37 |
-
else:
|
38 |
-
raise Exception("Malformed PFM header.")
|
39 |
-
|
40 |
-
scale = float(file.readline().decode("ascii").rstrip())
|
41 |
-
if scale < 0:
|
42 |
-
# little-endian
|
43 |
-
endian = "<"
|
44 |
-
scale = -scale
|
45 |
-
else:
|
46 |
-
# big-endian
|
47 |
-
endian = ">"
|
48 |
-
|
49 |
-
data = np.fromfile(file, endian + "f")
|
50 |
-
shape = (height, width, 3) if color else (height, width)
|
51 |
-
|
52 |
-
data = np.reshape(data, shape)
|
53 |
-
data = np.flipud(data)
|
54 |
-
|
55 |
-
return data, scale
|
56 |
-
|
57 |
-
|
58 |
-
def write_pfm(path, image, scale=1):
|
59 |
-
"""Write pfm file.
|
60 |
-
|
61 |
-
Args:
|
62 |
-
path (str): pathto file
|
63 |
-
image (array): data
|
64 |
-
scale (int, optional): Scale. Defaults to 1.
|
65 |
-
"""
|
66 |
-
|
67 |
-
with open(path, "wb") as file:
|
68 |
-
color = None
|
69 |
-
|
70 |
-
if image.dtype.name != "float32":
|
71 |
-
raise Exception("Image dtype must be float32.")
|
72 |
-
|
73 |
-
image = np.flipud(image)
|
74 |
-
|
75 |
-
if len(image.shape) == 3 and image.shape[2] == 3: # color image
|
76 |
-
color = True
|
77 |
-
elif (
|
78 |
-
len(image.shape) == 2 or len(image.shape) == 3 and image.shape[2] == 1
|
79 |
-
): # greyscale
|
80 |
-
color = False
|
81 |
-
else:
|
82 |
-
raise Exception("Image must have H x W x 3, H x W x 1 or H x W dimensions.")
|
83 |
-
|
84 |
-
file.write("PF\n" if color else "Pf\n".encode())
|
85 |
-
file.write("%d %d\n".encode() % (image.shape[1], image.shape[0]))
|
86 |
-
|
87 |
-
endian = image.dtype.byteorder
|
88 |
-
|
89 |
-
if endian == "<" or endian == "=" and sys.byteorder == "little":
|
90 |
-
scale = -scale
|
91 |
-
|
92 |
-
file.write("%f\n".encode() % scale)
|
93 |
-
|
94 |
-
image.tofile(file)
|
95 |
-
|
96 |
-
|
97 |
-
def read_image(path):
|
98 |
-
"""Read image and output RGB image (0-1).
|
99 |
-
|
100 |
-
Args:
|
101 |
-
path (str): path to file
|
102 |
-
|
103 |
-
Returns:
|
104 |
-
array: RGB image (0-1)
|
105 |
-
"""
|
106 |
-
img = cv2.imread(path)
|
107 |
-
|
108 |
-
if img.ndim == 2:
|
109 |
-
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
|
110 |
-
|
111 |
-
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) / 255.0
|
112 |
-
|
113 |
-
return img
|
114 |
-
|
115 |
-
|
116 |
-
def resize_image(img):
|
117 |
-
"""Resize image and make it fit for network.
|
118 |
-
|
119 |
-
Args:
|
120 |
-
img (array): image
|
121 |
-
|
122 |
-
Returns:
|
123 |
-
tensor: data ready for network
|
124 |
-
"""
|
125 |
-
height_orig = img.shape[0]
|
126 |
-
width_orig = img.shape[1]
|
127 |
-
|
128 |
-
if width_orig > height_orig:
|
129 |
-
scale = width_orig / 384
|
130 |
-
else:
|
131 |
-
scale = height_orig / 384
|
132 |
-
|
133 |
-
height = (np.ceil(height_orig / scale / 32) * 32).astype(int)
|
134 |
-
width = (np.ceil(width_orig / scale / 32) * 32).astype(int)
|
135 |
-
|
136 |
-
img_resized = cv2.resize(img, (width, height), interpolation=cv2.INTER_AREA)
|
137 |
-
|
138 |
-
img_resized = (
|
139 |
-
torch.from_numpy(np.transpose(img_resized, (2, 0, 1))).contiguous().float()
|
140 |
-
)
|
141 |
-
img_resized = img_resized.unsqueeze(0)
|
142 |
-
|
143 |
-
return img_resized
|
144 |
-
|
145 |
-
|
146 |
-
def resize_depth(depth, width, height):
|
147 |
-
"""Resize depth map and bring to CPU (numpy).
|
148 |
-
|
149 |
-
Args:
|
150 |
-
depth (tensor): depth
|
151 |
-
width (int): image width
|
152 |
-
height (int): image height
|
153 |
-
|
154 |
-
Returns:
|
155 |
-
array: processed depth
|
156 |
-
"""
|
157 |
-
depth = torch.squeeze(depth[0, :, :, :]).to("cpu")
|
158 |
-
|
159 |
-
depth_resized = cv2.resize(
|
160 |
-
depth.numpy(), (width, height), interpolation=cv2.INTER_CUBIC
|
161 |
-
)
|
162 |
-
|
163 |
-
return depth_resized
|
164 |
-
|
165 |
-
def write_depth(path, depth, bits=1):
|
166 |
-
"""Write depth map to pfm and png file.
|
167 |
-
|
168 |
-
Args:
|
169 |
-
path (str): filepath without extension
|
170 |
-
depth (array): depth
|
171 |
-
"""
|
172 |
-
write_pfm(path + ".pfm", depth.astype(np.float32))
|
173 |
-
|
174 |
-
depth_min = depth.min()
|
175 |
-
depth_max = depth.max()
|
176 |
-
|
177 |
-
max_val = (2**(8*bits))-1
|
178 |
-
|
179 |
-
if depth_max - depth_min > np.finfo("float").eps:
|
180 |
-
out = max_val * (depth - depth_min) / (depth_max - depth_min)
|
181 |
-
else:
|
182 |
-
out = np.zeros(depth.shape, dtype=depth.type)
|
183 |
-
|
184 |
-
if bits == 1:
|
185 |
-
cv2.imwrite(path + ".png", out.astype("uint8"))
|
186 |
-
elif bits == 2:
|
187 |
-
cv2.imwrite(path + ".png", out.astype("uint16"))
|
188 |
-
|
189 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
i2v_test.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from omegaconf import OmegaConf
|
3 |
+
|
4 |
+
import torch
|
5 |
+
|
6 |
+
from scripts.evaluation.funcs import load_model_checkpoint, load_image_batch, save_videos, batch_ddim_sampling
|
7 |
+
from utils.utils import instantiate_from_config
|
8 |
+
from huggingface_hub import hf_hub_download
|
9 |
+
|
10 |
+
class Image2Video():
|
11 |
+
def __init__(self,result_dir='./tmp/',gpu_num=1) -> None:
|
12 |
+
self.download_model()
|
13 |
+
self.result_dir = result_dir
|
14 |
+
if not os.path.exists(self.result_dir):
|
15 |
+
os.mkdir(self.result_dir)
|
16 |
+
ckpt_path='checkpoints/i2v_512_v1/model.ckpt'
|
17 |
+
config_file='configs/inference_i2v_512_v1.0.yaml'
|
18 |
+
config = OmegaConf.load(config_file)
|
19 |
+
model_config = config.pop("model", OmegaConf.create())
|
20 |
+
model_config['params']['unet_config']['params']['use_checkpoint']=False
|
21 |
+
model_list = []
|
22 |
+
for gpu_id in range(gpu_num):
|
23 |
+
model = instantiate_from_config(model_config)
|
24 |
+
model = model.cuda(gpu_id)
|
25 |
+
assert os.path.exists(ckpt_path), "Error: checkpoint Not Found!"
|
26 |
+
model = load_model_checkpoint(model, ckpt_path)
|
27 |
+
model.eval()
|
28 |
+
model_list.append(model)
|
29 |
+
self.model_list = model_list
|
30 |
+
self.save_fps = 8
|
31 |
+
|
32 |
+
def get_image(self, image, prompt, steps=50, cfg_scale=12.0, eta=1.0, fps=16):
|
33 |
+
gpu_id=0
|
34 |
+
if steps > 60:
|
35 |
+
steps = 60
|
36 |
+
model = self.model_list[gpu_id]
|
37 |
+
batch_size=1
|
38 |
+
channels = model.model.diffusion_model.in_channels
|
39 |
+
frames = model.temporal_length
|
40 |
+
h, w = 320 // 8, 512 // 8
|
41 |
+
noise_shape = [batch_size, channels, frames, h, w]
|
42 |
+
|
43 |
+
#prompts = batch_size * [""]
|
44 |
+
text_emb = model.get_learned_conditioning([prompt])
|
45 |
+
|
46 |
+
# cond_images = load_image_batch([image_path])
|
47 |
+
img_tensor = torch.from_numpy(image).permute(2, 0, 1).float()
|
48 |
+
img_tensor = (img_tensor / 255. - 0.5) * 2
|
49 |
+
img_tensor = img_tensor.unsqueeze(0)
|
50 |
+
cond_images = img_tensor.to(model.device)
|
51 |
+
img_emb = model.get_image_embeds(cond_images)
|
52 |
+
imtext_cond = torch.cat([text_emb, img_emb], dim=1)
|
53 |
+
cond = {"c_crossattn": [imtext_cond], "fps": fps}
|
54 |
+
|
55 |
+
## inference
|
56 |
+
batch_samples = batch_ddim_sampling(model, cond, noise_shape, n_samples=1, ddim_steps=steps, ddim_eta=eta, cfg_scale=cfg_scale)
|
57 |
+
## b,samples,c,t,h,w
|
58 |
+
prompt_str = prompt.replace("/", "_slash_") if "/" in prompt else prompt
|
59 |
+
prompt_str = prompt_str.replace(" ", "_") if " " in prompt else prompt_str
|
60 |
+
prompt_str=prompt_str[:30]
|
61 |
+
|
62 |
+
save_videos(batch_samples, self.result_dir, filenames=[prompt_str], fps=self.save_fps)
|
63 |
+
return os.path.join(self.result_dir, f"{prompt_str}.mp4")
|
64 |
+
|
65 |
+
def download_model(self):
|
66 |
+
REPO_ID = 'VideoCrafter/Image2Video-512-v1.0'
|
67 |
+
filename_list = ['model.ckpt']
|
68 |
+
if not os.path.exists('./checkpoints/i2v_512_v1/'):
|
69 |
+
os.makedirs('./checkpoints/i2v_512_v1/')
|
70 |
+
for filename in filename_list:
|
71 |
+
local_file = os.path.join('./checkpoints/i2v_512_v1/', filename)
|
72 |
+
if not os.path.exists(local_file):
|
73 |
+
hf_hub_download(repo_id=REPO_ID, filename=filename, local_dir='./checkpoints/i2v_512_v1/', local_dir_use_symlinks=False)
|
74 |
+
|
75 |
+
if __name__ == '__main__':
|
76 |
+
i2v = Image2Video()
|
77 |
+
video_path = i2v.get_image('prompts/i2v_prompts/horse.png','horses are walking on the grassland')
|
78 |
+
print('done', video_path)
|
input/flamingo.mp4
DELETED
Binary file (897 kB)
|
|
input/prompts.txt
DELETED
@@ -1,2 +0,0 @@
|
|
1 |
-
astronaut riding a horse
|
2 |
-
Flying through an intense battle between pirate ships in a stormy ocean
|
|
|
|
|
|
lvdm/basics.py
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# adopted from
|
2 |
+
# https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
|
3 |
+
# and
|
4 |
+
# https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
|
5 |
+
# and
|
6 |
+
# https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py
|
7 |
+
#
|
8 |
+
# thanks!
|
9 |
+
|
10 |
+
import torch.nn as nn
|
11 |
+
from utils.utils import instantiate_from_config
|
12 |
+
|
13 |
+
|
14 |
+
def disabled_train(self, mode=True):
|
15 |
+
"""Overwrite model.train with this function to make sure train/eval mode
|
16 |
+
does not change anymore."""
|
17 |
+
return self
|
18 |
+
|
19 |
+
def zero_module(module):
|
20 |
+
"""
|
21 |
+
Zero out the parameters of a module and return it.
|
22 |
+
"""
|
23 |
+
for p in module.parameters():
|
24 |
+
p.detach().zero_()
|
25 |
+
return module
|
26 |
+
|
27 |
+
def scale_module(module, scale):
|
28 |
+
"""
|
29 |
+
Scale the parameters of a module and return it.
|
30 |
+
"""
|
31 |
+
for p in module.parameters():
|
32 |
+
p.detach().mul_(scale)
|
33 |
+
return module
|
34 |
+
|
35 |
+
|
36 |
+
def conv_nd(dims, *args, **kwargs):
|
37 |
+
"""
|
38 |
+
Create a 1D, 2D, or 3D convolution module.
|
39 |
+
"""
|
40 |
+
if dims == 1:
|
41 |
+
return nn.Conv1d(*args, **kwargs)
|
42 |
+
elif dims == 2:
|
43 |
+
return nn.Conv2d(*args, **kwargs)
|
44 |
+
elif dims == 3:
|
45 |
+
return nn.Conv3d(*args, **kwargs)
|
46 |
+
raise ValueError(f"unsupported dimensions: {dims}")
|
47 |
+
|
48 |
+
|
49 |
+
def linear(*args, **kwargs):
|
50 |
+
"""
|
51 |
+
Create a linear module.
|
52 |
+
"""
|
53 |
+
return nn.Linear(*args, **kwargs)
|
54 |
+
|
55 |
+
|
56 |
+
def avg_pool_nd(dims, *args, **kwargs):
|
57 |
+
"""
|
58 |
+
Create a 1D, 2D, or 3D average pooling module.
|
59 |
+
"""
|
60 |
+
if dims == 1:
|
61 |
+
return nn.AvgPool1d(*args, **kwargs)
|
62 |
+
elif dims == 2:
|
63 |
+
return nn.AvgPool2d(*args, **kwargs)
|
64 |
+
elif dims == 3:
|
65 |
+
return nn.AvgPool3d(*args, **kwargs)
|
66 |
+
raise ValueError(f"unsupported dimensions: {dims}")
|
67 |
+
|
68 |
+
|
69 |
+
def nonlinearity(type='silu'):
|
70 |
+
if type == 'silu':
|
71 |
+
return nn.SiLU()
|
72 |
+
elif type == 'leaky_relu':
|
73 |
+
return nn.LeakyReLU()
|
74 |
+
|
75 |
+
|
76 |
+
class GroupNormSpecific(nn.GroupNorm):
|
77 |
+
def forward(self, x):
|
78 |
+
return super().forward(x.float()).type(x.dtype)
|
79 |
+
|
80 |
+
|
81 |
+
def normalization(channels, num_groups=32):
|
82 |
+
"""
|
83 |
+
Make a standard normalization layer.
|
84 |
+
:param channels: number of input channels.
|
85 |
+
:return: an nn.Module for normalization.
|
86 |
+
"""
|
87 |
+
return GroupNormSpecific(num_groups, channels)
|
88 |
+
|
89 |
+
|
90 |
+
class HybridConditioner(nn.Module):
|
91 |
+
|
92 |
+
def __init__(self, c_concat_config, c_crossattn_config):
|
93 |
+
super().__init__()
|
94 |
+
self.concat_conditioner = instantiate_from_config(c_concat_config)
|
95 |
+
self.crossattn_conditioner = instantiate_from_config(c_crossattn_config)
|
96 |
+
|
97 |
+
def forward(self, c_concat, c_crossattn):
|
98 |
+
c_concat = self.concat_conditioner(c_concat)
|
99 |
+
c_crossattn = self.crossattn_conditioner(c_crossattn)
|
100 |
+
return {'c_concat': [c_concat], 'c_crossattn': [c_crossattn]}
|
lvdm/common.py
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from inspect import isfunction
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
import torch.distributed as dist
|
6 |
+
|
7 |
+
|
8 |
+
def gather_data(data, return_np=True):
|
9 |
+
''' gather data from multiple processes to one list '''
|
10 |
+
data_list = [torch.zeros_like(data) for _ in range(dist.get_world_size())]
|
11 |
+
dist.all_gather(data_list, data) # gather not supported with NCCL
|
12 |
+
if return_np:
|
13 |
+
data_list = [data.cpu().numpy() for data in data_list]
|
14 |
+
return data_list
|
15 |
+
|
16 |
+
def autocast(f):
|
17 |
+
def do_autocast(*args, **kwargs):
|
18 |
+
with torch.cuda.amp.autocast(enabled=True,
|
19 |
+
dtype=torch.get_autocast_gpu_dtype(),
|
20 |
+
cache_enabled=torch.is_autocast_cache_enabled()):
|
21 |
+
return f(*args, **kwargs)
|
22 |
+
return do_autocast
|
23 |
+
|
24 |
+
|
25 |
+
def extract_into_tensor(a, t, x_shape):
|
26 |
+
b, *_ = t.shape
|
27 |
+
out = a.gather(-1, t)
|
28 |
+
return out.reshape(b, *((1,) * (len(x_shape) - 1)))
|
29 |
+
|
30 |
+
|
31 |
+
def noise_like(shape, device, repeat=False):
|
32 |
+
repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
|
33 |
+
noise = lambda: torch.randn(shape, device=device)
|
34 |
+
return repeat_noise() if repeat else noise()
|
35 |
+
|
36 |
+
|
37 |
+
def default(val, d):
|
38 |
+
if exists(val):
|
39 |
+
return val
|
40 |
+
return d() if isfunction(d) else d
|
41 |
+
|
42 |
+
def exists(val):
|
43 |
+
return val is not None
|
44 |
+
|
45 |
+
def identity(*args, **kwargs):
|
46 |
+
return nn.Identity()
|
47 |
+
|
48 |
+
def uniq(arr):
|
49 |
+
return{el: True for el in arr}.keys()
|
50 |
+
|
51 |
+
def mean_flat(tensor):
|
52 |
+
"""
|
53 |
+
Take the mean over all non-batch dimensions.
|
54 |
+
"""
|
55 |
+
return tensor.mean(dim=list(range(1, len(tensor.shape))))
|
56 |
+
|
57 |
+
def ismap(x):
|
58 |
+
if not isinstance(x, torch.Tensor):
|
59 |
+
return False
|
60 |
+
return (len(x.shape) == 4) and (x.shape[1] > 3)
|
61 |
+
|
62 |
+
def isimage(x):
|
63 |
+
if not isinstance(x,torch.Tensor):
|
64 |
+
return False
|
65 |
+
return (len(x.shape) == 4) and (x.shape[1] == 3 or x.shape[1] == 1)
|
66 |
+
|
67 |
+
def max_neg_value(t):
|
68 |
+
return -torch.finfo(t.dtype).max
|
69 |
+
|
70 |
+
def shape_to_str(x):
|
71 |
+
shape_str = "x".join([str(x) for x in x.shape])
|
72 |
+
return shape_str
|
73 |
+
|
74 |
+
def init_(tensor):
|
75 |
+
dim = tensor.shape[-1]
|
76 |
+
std = 1 / math.sqrt(dim)
|
77 |
+
tensor.uniform_(-std, std)
|
78 |
+
return tensor
|
79 |
+
|
80 |
+
ckpt = torch.utils.checkpoint.checkpoint
|
81 |
+
def checkpoint(func, inputs, params, flag):
|
82 |
+
"""
|
83 |
+
Evaluate a function without caching intermediate activations, allowing for
|
84 |
+
reduced memory at the expense of extra compute in the backward pass.
|
85 |
+
:param func: the function to evaluate.
|
86 |
+
:param inputs: the argument sequence to pass to `func`.
|
87 |
+
:param params: a sequence of parameters `func` depends on but does not
|
88 |
+
explicitly take as arguments.
|
89 |
+
:param flag: if False, disable gradient checkpointing.
|
90 |
+
"""
|
91 |
+
if flag:
|
92 |
+
return ckpt(func, *inputs)
|
93 |
+
else:
|
94 |
+
return func(*inputs)
|
95 |
+
|
lvdm/data/webvid.py
DELETED
@@ -1,188 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import random
|
3 |
-
import bisect
|
4 |
-
|
5 |
-
import pandas as pd
|
6 |
-
|
7 |
-
import omegaconf
|
8 |
-
import torch
|
9 |
-
from torch.utils.data import Dataset
|
10 |
-
from torchvision import transforms
|
11 |
-
from decord import VideoReader, cpu
|
12 |
-
import torchvision.transforms._transforms_video as transforms_video
|
13 |
-
|
14 |
-
class WebVid(Dataset):
|
15 |
-
"""
|
16 |
-
WebVid Dataset.
|
17 |
-
Assumes webvid data is structured as follows.
|
18 |
-
Webvid/
|
19 |
-
videos/
|
20 |
-
000001_000050/ ($page_dir)
|
21 |
-
1.mp4 (videoid.mp4)
|
22 |
-
...
|
23 |
-
5000.mp4
|
24 |
-
...
|
25 |
-
"""
|
26 |
-
def __init__(self,
|
27 |
-
meta_path,
|
28 |
-
data_dir,
|
29 |
-
subsample=None,
|
30 |
-
video_length=16,
|
31 |
-
resolution=[256, 512],
|
32 |
-
frame_stride=1,
|
33 |
-
spatial_transform=None,
|
34 |
-
crop_resolution=None,
|
35 |
-
fps_max=None,
|
36 |
-
load_raw_resolution=False,
|
37 |
-
fps_schedule=None,
|
38 |
-
fs_probs=None,
|
39 |
-
bs_per_gpu=None,
|
40 |
-
trigger_word='',
|
41 |
-
dataname='',
|
42 |
-
):
|
43 |
-
self.meta_path = meta_path
|
44 |
-
self.data_dir = data_dir
|
45 |
-
self.subsample = subsample
|
46 |
-
self.video_length = video_length
|
47 |
-
self.resolution = [resolution, resolution] if isinstance(resolution, int) else resolution
|
48 |
-
self.frame_stride = frame_stride
|
49 |
-
self.fps_max = fps_max
|
50 |
-
self.load_raw_resolution = load_raw_resolution
|
51 |
-
self.fs_probs = fs_probs
|
52 |
-
self.trigger_word = trigger_word
|
53 |
-
self.dataname = dataname
|
54 |
-
|
55 |
-
self._load_metadata()
|
56 |
-
if spatial_transform is not None:
|
57 |
-
if spatial_transform == "random_crop":
|
58 |
-
self.spatial_transform = transforms_video.RandomCropVideo(crop_resolution)
|
59 |
-
elif spatial_transform == "resize_center_crop":
|
60 |
-
assert(self.resolution[0] == self.resolution[1])
|
61 |
-
self.spatial_transform = transforms.Compose([
|
62 |
-
transforms.Resize(resolution),
|
63 |
-
transforms_video.CenterCropVideo(resolution),
|
64 |
-
])
|
65 |
-
else:
|
66 |
-
raise NotImplementedError
|
67 |
-
else:
|
68 |
-
self.spatial_transform = None
|
69 |
-
|
70 |
-
self.fps_schedule = fps_schedule
|
71 |
-
self.bs_per_gpu = bs_per_gpu
|
72 |
-
if self.fps_schedule is not None:
|
73 |
-
assert(self.bs_per_gpu is not None)
|
74 |
-
self.counter = 0
|
75 |
-
self.stage_idx = 0
|
76 |
-
|
77 |
-
def _load_metadata(self):
|
78 |
-
metadata = pd.read_csv(self.meta_path)
|
79 |
-
if self.subsample is not None:
|
80 |
-
metadata = metadata.sample(self.subsample, random_state=0)
|
81 |
-
metadata['caption'] = metadata['name']
|
82 |
-
del metadata['name']
|
83 |
-
self.metadata = metadata
|
84 |
-
self.metadata.dropna(inplace=True)
|
85 |
-
# self.metadata['caption'] = self.metadata['caption'].str[:350]
|
86 |
-
|
87 |
-
def _get_video_path(self, sample):
|
88 |
-
if self.dataname == "loradata":
|
89 |
-
rel_video_fp = str(sample['videoid']) + '.mp4'
|
90 |
-
full_video_fp = os.path.join(self.data_dir, rel_video_fp)
|
91 |
-
else:
|
92 |
-
rel_video_fp = os.path.join(sample['page_dir'], str(sample['videoid']) + '.mp4')
|
93 |
-
full_video_fp = os.path.join(self.data_dir, 'videos', rel_video_fp)
|
94 |
-
return full_video_fp, rel_video_fp
|
95 |
-
|
96 |
-
def get_fs_based_on_schedule(self, frame_strides, schedule):
|
97 |
-
assert(len(frame_strides) == len(schedule) + 1) # nstage=len_fps_schedule + 1
|
98 |
-
global_step = self.counter // self.bs_per_gpu # TODO: support resume.
|
99 |
-
stage_idx = bisect.bisect(schedule, global_step)
|
100 |
-
frame_stride = frame_strides[stage_idx]
|
101 |
-
# log stage change
|
102 |
-
if stage_idx != self.stage_idx:
|
103 |
-
print(f'fps stage: {stage_idx} start ... new frame stride = {frame_stride}')
|
104 |
-
self.stage_idx = stage_idx
|
105 |
-
return frame_stride
|
106 |
-
|
107 |
-
def get_fs_based_on_probs(self, frame_strides, probs):
|
108 |
-
assert(len(frame_strides) == len(probs))
|
109 |
-
return random.choices(frame_strides, weights=probs)[0]
|
110 |
-
|
111 |
-
def get_fs_randomly(self, frame_strides):
|
112 |
-
return random.choice(frame_strides)
|
113 |
-
|
114 |
-
def __getitem__(self, index):
|
115 |
-
|
116 |
-
if isinstance(self.frame_stride, list) or isinstance(self.frame_stride, omegaconf.listconfig.ListConfig):
|
117 |
-
if self.fps_schedule is not None:
|
118 |
-
frame_stride = self.get_fs_based_on_schedule(self.frame_stride, self.fps_schedule)
|
119 |
-
elif self.fs_probs is not None:
|
120 |
-
frame_stride = self.get_fs_based_on_probs(self.frame_stride, self.fs_probs)
|
121 |
-
else:
|
122 |
-
frame_stride = self.get_fs_randomly(self.frame_stride)
|
123 |
-
else:
|
124 |
-
frame_stride = self.frame_stride
|
125 |
-
assert(isinstance(frame_stride, int)), type(frame_stride)
|
126 |
-
|
127 |
-
while True:
|
128 |
-
index = index % len(self.metadata)
|
129 |
-
sample = self.metadata.iloc[index]
|
130 |
-
video_path, rel_fp = self._get_video_path(sample)
|
131 |
-
caption = sample['caption']+self.trigger_word
|
132 |
-
|
133 |
-
# make reader
|
134 |
-
try:
|
135 |
-
if self.load_raw_resolution:
|
136 |
-
video_reader = VideoReader(video_path, ctx=cpu(0))
|
137 |
-
else:
|
138 |
-
video_reader = VideoReader(video_path, ctx=cpu(0), width=self.resolution[1], height=self.resolution[0])
|
139 |
-
if len(video_reader) < self.video_length:
|
140 |
-
print(f"video length ({len(video_reader)}) is smaller than target length({self.video_length})")
|
141 |
-
index += 1
|
142 |
-
continue
|
143 |
-
else:
|
144 |
-
pass
|
145 |
-
except:
|
146 |
-
index += 1
|
147 |
-
print(f"Load video failed! path = {video_path}")
|
148 |
-
continue
|
149 |
-
|
150 |
-
# sample strided frames
|
151 |
-
all_frames = list(range(0, len(video_reader), frame_stride))
|
152 |
-
if len(all_frames) < self.video_length: # recal a max fs
|
153 |
-
frame_stride = len(video_reader) // self.video_length
|
154 |
-
assert(frame_stride != 0)
|
155 |
-
all_frames = list(range(0, len(video_reader), frame_stride))
|
156 |
-
|
157 |
-
# select a random clip
|
158 |
-
rand_idx = random.randint(0, len(all_frames) - self.video_length)
|
159 |
-
frame_indices = all_frames[rand_idx:rand_idx+self.video_length]
|
160 |
-
try:
|
161 |
-
frames = video_reader.get_batch(frame_indices)
|
162 |
-
break
|
163 |
-
except:
|
164 |
-
print(f"Get frames failed! path = {video_path}")
|
165 |
-
index += 1
|
166 |
-
continue
|
167 |
-
|
168 |
-
assert(frames.shape[0] == self.video_length),f'{len(frames)}, self.video_length={self.video_length}'
|
169 |
-
frames = torch.tensor(frames.asnumpy()).permute(3, 0, 1, 2).float() # [t,h,w,c] -> [c,t,h,w]
|
170 |
-
if self.spatial_transform is not None:
|
171 |
-
frames = self.spatial_transform(frames)
|
172 |
-
if self.resolution is not None:
|
173 |
-
assert(frames.shape[2] == self.resolution[0] and frames.shape[3] == self.resolution[1]), f'frames={frames.shape}, self.resolution={self.resolution}'
|
174 |
-
frames = (frames / 255 - 0.5) * 2
|
175 |
-
|
176 |
-
fps_ori = video_reader.get_avg_fps()
|
177 |
-
fps_clip = fps_ori // frame_stride
|
178 |
-
if self.fps_max is not None and fps_clip > self.fps_max:
|
179 |
-
fps_clip = self.fps_max
|
180 |
-
|
181 |
-
data = {'video': frames, 'caption': caption, 'path': video_path, 'fps': fps_clip, 'frame_stride': frame_stride}
|
182 |
-
|
183 |
-
if self.fps_schedule is not None:
|
184 |
-
self.counter += 1
|
185 |
-
return data
|
186 |
-
|
187 |
-
def __len__(self):
|
188 |
-
return len(self.metadata)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lvdm/{models/modules/distributions.py → distributions.py}
RENAMED
@@ -2,6 +2,25 @@ import torch
|
|
2 |
import numpy as np
|
3 |
|
4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
class DiagonalGaussianDistribution(object):
|
6 |
def __init__(self, parameters, deterministic=False):
|
7 |
self.parameters = parameters
|
|
|
2 |
import numpy as np
|
3 |
|
4 |
|
5 |
+
class AbstractDistribution:
|
6 |
+
def sample(self):
|
7 |
+
raise NotImplementedError()
|
8 |
+
|
9 |
+
def mode(self):
|
10 |
+
raise NotImplementedError()
|
11 |
+
|
12 |
+
|
13 |
+
class DiracDistribution(AbstractDistribution):
|
14 |
+
def __init__(self, value):
|
15 |
+
self.value = value
|
16 |
+
|
17 |
+
def sample(self):
|
18 |
+
return self.value
|
19 |
+
|
20 |
+
def mode(self):
|
21 |
+
return self.value
|
22 |
+
|
23 |
+
|
24 |
class DiagonalGaussianDistribution(object):
|
25 |
def __init__(self, parameters, deterministic=False):
|
26 |
self.parameters = parameters
|
lvdm/ema.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
|
4 |
+
|
5 |
+
class LitEma(nn.Module):
|
6 |
+
def __init__(self, model, decay=0.9999, use_num_upates=True):
|
7 |
+
super().__init__()
|
8 |
+
if decay < 0.0 or decay > 1.0:
|
9 |
+
raise ValueError('Decay must be between 0 and 1')
|
10 |
+
|
11 |
+
self.m_name2s_name = {}
|
12 |
+
self.register_buffer('decay', torch.tensor(decay, dtype=torch.float32))
|
13 |
+
self.register_buffer('num_updates', torch.tensor(0,dtype=torch.int) if use_num_upates
|
14 |
+
else torch.tensor(-1,dtype=torch.int))
|
15 |
+
|
16 |
+
for name, p in model.named_parameters():
|
17 |
+
if p.requires_grad:
|
18 |
+
#remove as '.'-character is not allowed in buffers
|
19 |
+
s_name = name.replace('.','')
|
20 |
+
self.m_name2s_name.update({name:s_name})
|
21 |
+
self.register_buffer(s_name,p.clone().detach().data)
|
22 |
+
|
23 |
+
self.collected_params = []
|
24 |
+
|
25 |
+
def forward(self,model):
|
26 |
+
decay = self.decay
|
27 |
+
|
28 |
+
if self.num_updates >= 0:
|
29 |
+
self.num_updates += 1
|
30 |
+
decay = min(self.decay,(1 + self.num_updates) / (10 + self.num_updates))
|
31 |
+
|
32 |
+
one_minus_decay = 1.0 - decay
|
33 |
+
|
34 |
+
with torch.no_grad():
|
35 |
+
m_param = dict(model.named_parameters())
|
36 |
+
shadow_params = dict(self.named_buffers())
|
37 |
+
|
38 |
+
for key in m_param:
|
39 |
+
if m_param[key].requires_grad:
|
40 |
+
sname = self.m_name2s_name[key]
|
41 |
+
shadow_params[sname] = shadow_params[sname].type_as(m_param[key])
|
42 |
+
shadow_params[sname].sub_(one_minus_decay * (shadow_params[sname] - m_param[key]))
|
43 |
+
else:
|
44 |
+
assert not key in self.m_name2s_name
|
45 |
+
|
46 |
+
def copy_to(self, model):
|
47 |
+
m_param = dict(model.named_parameters())
|
48 |
+
shadow_params = dict(self.named_buffers())
|
49 |
+
for key in m_param:
|
50 |
+
if m_param[key].requires_grad:
|
51 |
+
m_param[key].data.copy_(shadow_params[self.m_name2s_name[key]].data)
|
52 |
+
else:
|
53 |
+
assert not key in self.m_name2s_name
|
54 |
+
|
55 |
+
def store(self, parameters):
|
56 |
+
"""
|
57 |
+
Save the current parameters for restoring later.
|
58 |
+
Args:
|
59 |
+
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
|
60 |
+
temporarily stored.
|
61 |
+
"""
|
62 |
+
self.collected_params = [param.clone() for param in parameters]
|
63 |
+
|
64 |
+
def restore(self, parameters):
|
65 |
+
"""
|
66 |
+
Restore the parameters stored with the `store` method.
|
67 |
+
Useful to validate the model with EMA parameters without affecting the
|
68 |
+
original optimization process. Store the parameters before the
|
69 |
+
`copy_to` method. After validation (or model saving), use this to
|
70 |
+
restore the former parameters.
|
71 |
+
Args:
|
72 |
+
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
|
73 |
+
updated with the stored parameters.
|
74 |
+
"""
|
75 |
+
for c_param, param in zip(self.collected_params, parameters):
|
76 |
+
param.data.copy_(c_param.data)
|
lvdm/models/autoencoder.py
CHANGED
@@ -1,12 +1,14 @@
|
|
1 |
-
import torch
|
2 |
-
import pytorch_lightning as pl
|
3 |
-
import torch.nn.functional as F
|
4 |
import os
|
|
|
|
|
|
|
5 |
from einops import rearrange
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
from lvdm.models.modules.autoencoder_modules import Encoder, Decoder
|
8 |
-
from lvdm.models.modules.distributions import DiagonalGaussianDistribution
|
9 |
-
from lvdm.utils.common_utils import instantiate_from_config
|
10 |
|
11 |
class AutoencoderKL(pl.LightningModule):
|
12 |
def __init__(self,
|
@@ -69,12 +71,12 @@ class AutoencoderKL(pl.LightningModule):
|
|
69 |
if self.test_args.save_input:
|
70 |
os.makedirs(self.root_inputs, exist_ok=True)
|
71 |
assert(self.test_args is not None)
|
72 |
-
self.test_maximum = getattr(self.test_args, 'test_maximum', None)
|
73 |
self.count = 0
|
74 |
self.eval_metrics = {}
|
75 |
self.decodes = []
|
76 |
self.save_decode_samples = 2048
|
77 |
-
|
78 |
def init_from_ckpt(self, path, ignore_keys=list()):
|
79 |
sd = torch.load(path, map_location="cpu")
|
80 |
try:
|
@@ -115,10 +117,6 @@ class AutoencoderKL(pl.LightningModule):
|
|
115 |
|
116 |
def get_input(self, batch, k):
|
117 |
x = batch[k]
|
118 |
-
# if len(x.shape) == 3:
|
119 |
-
# x = x[..., None]
|
120 |
-
# if x.dim() == 4:
|
121 |
-
# x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
|
122 |
if x.dim() == 5 and self.input_dim == 4:
|
123 |
b,c,t,h,w = x.shape
|
124 |
self.b = b
|
@@ -200,3 +198,22 @@ class AutoencoderKL(pl.LightningModule):
|
|
200 |
x = F.conv2d(x, weight=self.colorize)
|
201 |
x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
|
202 |
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
+
from contextlib import contextmanager
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
from einops import rearrange
|
6 |
+
import torch.nn.functional as F
|
7 |
+
import pytorch_lightning as pl
|
8 |
+
from lvdm.modules.networks.ae_modules import Encoder, Decoder
|
9 |
+
from lvdm.distributions import DiagonalGaussianDistribution
|
10 |
+
from utils.utils import instantiate_from_config
|
11 |
|
|
|
|
|
|
|
12 |
|
13 |
class AutoencoderKL(pl.LightningModule):
|
14 |
def __init__(self,
|
|
|
71 |
if self.test_args.save_input:
|
72 |
os.makedirs(self.root_inputs, exist_ok=True)
|
73 |
assert(self.test_args is not None)
|
74 |
+
self.test_maximum = getattr(self.test_args, 'test_maximum', None)
|
75 |
self.count = 0
|
76 |
self.eval_metrics = {}
|
77 |
self.decodes = []
|
78 |
self.save_decode_samples = 2048
|
79 |
+
|
80 |
def init_from_ckpt(self, path, ignore_keys=list()):
|
81 |
sd = torch.load(path, map_location="cpu")
|
82 |
try:
|
|
|
117 |
|
118 |
def get_input(self, batch, k):
|
119 |
x = batch[k]
|
|
|
|
|
|
|
|
|
120 |
if x.dim() == 5 and self.input_dim == 4:
|
121 |
b,c,t,h,w = x.shape
|
122 |
self.b = b
|
|
|
198 |
x = F.conv2d(x, weight=self.colorize)
|
199 |
x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
|
200 |
return x
|
201 |
+
|
202 |
+
class IdentityFirstStage(torch.nn.Module):
|
203 |
+
def __init__(self, *args, vq_interface=False, **kwargs):
|
204 |
+
self.vq_interface = vq_interface # TODO: Should be true by default but check to not break older stuff
|
205 |
+
super().__init__()
|
206 |
+
|
207 |
+
def encode(self, x, *args, **kwargs):
|
208 |
+
return x
|
209 |
+
|
210 |
+
def decode(self, x, *args, **kwargs):
|
211 |
+
return x
|
212 |
+
|
213 |
+
def quantize(self, x, *args, **kwargs):
|
214 |
+
if self.vq_interface:
|
215 |
+
return x, None, [None, None, None]
|
216 |
+
return x
|
217 |
+
|
218 |
+
def forward(self, x, *args, **kwargs):
|
219 |
+
return x
|
lvdm/models/ddpm3d.py
CHANGED
@@ -1,54 +1,42 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
|
|
5 |
from functools import partial
|
6 |
from contextlib import contextmanager
|
7 |
-
|
8 |
import numpy as np
|
9 |
from tqdm import tqdm
|
10 |
from einops import rearrange, repeat
|
11 |
-
|
|
|
12 |
import torch
|
13 |
import torch.nn as nn
|
14 |
-
import pytorch_lightning as pl
|
15 |
from torchvision.utils import make_grid
|
16 |
-
|
17 |
-
from
|
18 |
-
from lvdm.
|
19 |
-
from lvdm.
|
20 |
-
from lvdm.models.
|
21 |
-
from lvdm.
|
22 |
-
from lvdm.
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
def split_video_to_clips(video, clip_length, drop_left=True):
|
36 |
-
video_length = video.shape[2]
|
37 |
-
shape = video.shape
|
38 |
-
if video_length % clip_length != 0 and drop_left:
|
39 |
-
video = video[:, :, :video_length // clip_length * clip_length, :, :]
|
40 |
-
print(f'[split_video_to_clips] Drop frames from {shape} to {video.shape}')
|
41 |
-
nclips = video_length // clip_length
|
42 |
-
clips = rearrange(video, 'b c (nc cl) h w -> (b nc) c cl h w', cl=clip_length, nc=nclips)
|
43 |
-
return clips
|
44 |
-
|
45 |
-
def merge_clips_to_videos(clips, bs):
|
46 |
-
nclips = clips.shape[0] // bs
|
47 |
-
video = rearrange(clips, '(b nc) c t h w -> b c (nc t) h w', nc=nclips)
|
48 |
-
return video
|
49 |
|
50 |
class DDPM(pl.LightningModule):
|
51 |
-
# classic DDPM with Gaussian diffusion, in
|
52 |
def __init__(self,
|
53 |
unet_config,
|
54 |
timesteps=1000,
|
@@ -57,11 +45,10 @@ class DDPM(pl.LightningModule):
|
|
57 |
ckpt_path=None,
|
58 |
ignore_keys=[],
|
59 |
load_only_unet=False,
|
60 |
-
monitor=
|
61 |
use_ema=True,
|
62 |
first_stage_key="image",
|
63 |
image_size=256,
|
64 |
-
video_length=None,
|
65 |
channels=3,
|
66 |
log_every_t=100,
|
67 |
clip_denoised=True,
|
@@ -70,35 +57,35 @@ class DDPM(pl.LightningModule):
|
|
70 |
cosine_s=8e-3,
|
71 |
given_betas=None,
|
72 |
original_elbo_weight=0.,
|
73 |
-
v_posterior=0.,
|
74 |
l_simple_weight=1.,
|
75 |
conditioning_key=None,
|
76 |
-
parameterization="eps",
|
77 |
scheduler_config=None,
|
|
|
78 |
learn_logvar=False,
|
79 |
-
logvar_init=0
|
80 |
-
*args, **kwargs
|
81 |
):
|
82 |
super().__init__()
|
83 |
assert parameterization in ["eps", "x0"], 'currently only supporting "eps" and "x0"'
|
84 |
self.parameterization = parameterization
|
85 |
-
|
86 |
self.cond_stage_model = None
|
87 |
self.clip_denoised = clip_denoised
|
88 |
self.log_every_t = log_every_t
|
89 |
self.first_stage_key = first_stage_key
|
90 |
-
self.
|
91 |
-
|
|
|
92 |
if isinstance(self.image_size, int):
|
93 |
self.image_size = [self.image_size, self.image_size]
|
94 |
-
self.
|
95 |
self.model = DiffusionWrapper(unet_config, conditioning_key)
|
96 |
-
self.conditioning_key = conditioning_key # also register conditioning_key in diffusion
|
97 |
-
|
98 |
-
self.temporal_length = video_length if video_length is not None else unet_config.params.temporal_length
|
99 |
-
count_params(self.model, verbose=True)
|
100 |
self.use_ema = use_ema
|
101 |
-
|
|
|
|
|
|
|
102 |
self.use_scheduler = scheduler_config is not None
|
103 |
if self.use_scheduler:
|
104 |
self.scheduler_config = scheduler_config
|
@@ -122,6 +109,7 @@ class DDPM(pl.LightningModule):
|
|
122 |
if self.learn_logvar:
|
123 |
self.logvar = nn.Parameter(self.logvar, requires_grad=True)
|
124 |
|
|
|
125 |
def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000,
|
126 |
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
127 |
if exists(given_betas):
|
@@ -182,14 +170,14 @@ class DDPM(pl.LightningModule):
|
|
182 |
self.model_ema.store(self.model.parameters())
|
183 |
self.model_ema.copy_to(self.model)
|
184 |
if context is not None:
|
185 |
-
|
186 |
try:
|
187 |
yield None
|
188 |
finally:
|
189 |
if self.use_ema:
|
190 |
self.model_ema.restore(self.model.parameters())
|
191 |
if context is not None:
|
192 |
-
|
193 |
|
194 |
def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
|
195 |
sd = torch.load(path, map_location="cpu")
|
@@ -198,16 +186,16 @@ class DDPM(pl.LightningModule):
|
|
198 |
keys = list(sd.keys())
|
199 |
for k in keys:
|
200 |
for ik in ignore_keys:
|
201 |
-
if k.startswith(ik)
|
202 |
-
|
203 |
del sd[k]
|
204 |
missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
|
205 |
sd, strict=False)
|
206 |
-
|
207 |
if len(missing) > 0:
|
208 |
-
|
209 |
if len(unexpected) > 0:
|
210 |
-
|
211 |
|
212 |
def q_mean_variance(self, x_start, t):
|
213 |
"""
|
@@ -274,196 +262,51 @@ class DDPM(pl.LightningModule):
|
|
274 |
|
275 |
@torch.no_grad()
|
276 |
def sample(self, batch_size=16, return_intermediates=False):
|
|
|
277 |
channels = self.channels
|
278 |
-
|
279 |
-
size = (batch_size, channels, video_length, *self.image_size)
|
280 |
-
return self.p_sample_loop(size,
|
281 |
return_intermediates=return_intermediates)
|
282 |
|
283 |
def q_sample(self, x_start, t, noise=None):
|
284 |
noise = default(noise, lambda: torch.randn_like(x_start))
|
285 |
-
return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
|
|
|
286 |
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
|
287 |
|
288 |
-
def get_loss(self, pred, target, mean=True, mask=None):
|
289 |
-
if self.loss_type == 'l1':
|
290 |
-
loss = (target - pred).abs()
|
291 |
-
if mean:
|
292 |
-
loss = loss.mean()
|
293 |
-
elif self.loss_type == 'l2':
|
294 |
-
if mean:
|
295 |
-
loss = torch.nn.functional.mse_loss(target, pred)
|
296 |
-
else:
|
297 |
-
loss = torch.nn.functional.mse_loss(target, pred, reduction='none')
|
298 |
-
else:
|
299 |
-
raise NotImplementedError("unknown loss type '{loss_type}'")
|
300 |
-
if mask is not None:
|
301 |
-
assert(mean is False)
|
302 |
-
assert(loss.shape[2:] == mask.shape[2:]) #thw need be the same
|
303 |
-
loss = loss * mask
|
304 |
-
return loss
|
305 |
-
|
306 |
-
def p_losses(self, x_start, t, noise=None):
|
307 |
-
noise = default(noise, lambda: torch.randn_like(x_start))
|
308 |
-
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
|
309 |
-
model_out = self.model(x_noisy, t)
|
310 |
-
|
311 |
-
loss_dict = {}
|
312 |
-
if self.parameterization == "eps":
|
313 |
-
target = noise
|
314 |
-
elif self.parameterization == "x0":
|
315 |
-
target = x_start
|
316 |
-
else:
|
317 |
-
raise NotImplementedError(f"Paramterization {self.parameterization} not yet supported")
|
318 |
-
|
319 |
-
loss = self.get_loss(model_out, target, mean=False).mean(dim=[1, 2, 3, 4])
|
320 |
-
|
321 |
-
log_prefix = 'train' if self.training else 'val'
|
322 |
-
|
323 |
-
loss_dict.update({f'{log_prefix}/loss_simple': loss.mean()})
|
324 |
-
loss_simple = loss.mean() * self.l_simple_weight
|
325 |
-
|
326 |
-
loss_vlb = (self.lvlb_weights[t] * loss).mean()
|
327 |
-
loss_dict.update({f'{log_prefix}/loss_vlb': loss_vlb})
|
328 |
-
|
329 |
-
loss = loss_simple + self.original_elbo_weight * loss_vlb
|
330 |
-
|
331 |
-
loss_dict.update({f'{log_prefix}/loss': loss})
|
332 |
-
|
333 |
-
return loss, loss_dict
|
334 |
-
|
335 |
-
def forward(self, x, *args, **kwargs):
|
336 |
-
t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
|
337 |
-
return self.p_losses(x, t, *args, **kwargs)
|
338 |
-
|
339 |
def get_input(self, batch, k):
|
340 |
x = batch[k]
|
341 |
x = x.to(memory_format=torch.contiguous_format).float()
|
342 |
return x
|
343 |
|
344 |
-
def shared_step(self, batch):
|
345 |
-
x = self.get_input(batch, self.first_stage_key)
|
346 |
-
loss, loss_dict = self(x)
|
347 |
-
return loss, loss_dict
|
348 |
-
|
349 |
-
def training_step(self, batch, batch_idx):
|
350 |
-
loss, loss_dict = self.shared_step(batch)
|
351 |
-
|
352 |
-
self.log_dict(loss_dict, prog_bar=True,
|
353 |
-
logger=True, on_step=True, on_epoch=True)
|
354 |
-
|
355 |
-
self.log("global_step", self.global_step,
|
356 |
-
prog_bar=True, logger=True, on_step=True, on_epoch=False)
|
357 |
-
|
358 |
-
if self.use_scheduler:
|
359 |
-
lr = self.optimizers().param_groups[0]['lr']
|
360 |
-
self.log('lr_abs', lr, prog_bar=True, logger=True, on_step=True, on_epoch=False)
|
361 |
-
|
362 |
-
if self.log_time:
|
363 |
-
total_train_time = (time.time() - self.start_time) / (3600*24)
|
364 |
-
avg_step_time = (time.time() - self.start_time) / (self.global_step + 1)
|
365 |
-
left_time_2w_step = (20000-self.global_step -1) * avg_step_time / (3600*24)
|
366 |
-
left_time_5w_step = (50000-self.global_step -1) * avg_step_time / (3600*24)
|
367 |
-
with open(self.logger_path, 'w') as f:
|
368 |
-
print(f'total_train_time = {total_train_time:.1f} days \n\
|
369 |
-
total_train_step = {self.global_step + 1} steps \n\
|
370 |
-
left_time_2w_step = {left_time_2w_step:.1f} days \n\
|
371 |
-
left_time_5w_step = {left_time_5w_step:.1f} days', file=f)
|
372 |
-
return loss
|
373 |
-
|
374 |
-
@torch.no_grad()
|
375 |
-
def validation_step(self, batch, batch_idx):
|
376 |
-
# _, loss_dict_no_ema = self.shared_step_validate(batch)
|
377 |
-
# with self.ema_scope():
|
378 |
-
# _, loss_dict_ema = self.shared_step_validate(batch)
|
379 |
-
# loss_dict_ema = {key + '_ema': loss_dict_ema[key] for key in loss_dict_ema}
|
380 |
-
# self.log_dict(loss_dict_no_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
|
381 |
-
# self.log_dict(loss_dict_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
|
382 |
-
if (self.global_step) % self.val_fvd_interval == 0 and self.global_step != 0:
|
383 |
-
print(f'sample for fvd...')
|
384 |
-
self.log_images_kwargs = {
|
385 |
-
'inpaint': False,
|
386 |
-
'plot_diffusion_rows': False,
|
387 |
-
'plot_progressive_rows': False,
|
388 |
-
'ddim_steps': 50,
|
389 |
-
'unconditional_guidance_scale': 15.0,
|
390 |
-
}
|
391 |
-
torch.cuda.empty_cache()
|
392 |
-
logs = self.log_images(batch, **self.log_images_kwargs)
|
393 |
-
self.log("batch_idx", batch_idx,
|
394 |
-
prog_bar=True, on_step=True, on_epoch=False)
|
395 |
-
return {'real': logs['inputs'], 'fake': logs['samples'], 'conditioning_txt_img': logs['conditioning_txt_img']}
|
396 |
-
|
397 |
-
def get_condition_validate(self, prompt):
|
398 |
-
""" text embd
|
399 |
-
"""
|
400 |
-
if isinstance(prompt, str):
|
401 |
-
prompt = [prompt]
|
402 |
-
c = self.get_learned_conditioning(prompt)
|
403 |
-
bs = c.shape[0]
|
404 |
-
|
405 |
-
return c
|
406 |
-
|
407 |
-
def on_train_batch_end(self, *args, **kwargs):
|
408 |
-
if self.use_ema:
|
409 |
-
self.model_ema(self.model)
|
410 |
-
|
411 |
-
def training_epoch_end(self, outputs):
|
412 |
-
|
413 |
-
if (self.current_epoch == 0) or self.resume_new_epoch == 0:
|
414 |
-
self.epoch_start_time = time.time()
|
415 |
-
self.current_epoch_time = 0
|
416 |
-
self.total_time = 0
|
417 |
-
self.epoch_time_avg = 0
|
418 |
-
else:
|
419 |
-
self.current_epoch_time = time.time() - self.epoch_start_time
|
420 |
-
self.epoch_start_time = time.time()
|
421 |
-
self.total_time += self.current_epoch_time
|
422 |
-
self.epoch_time_avg = self.total_time / self.current_epoch
|
423 |
-
self.resume_new_epoch += 1
|
424 |
-
epoch_avg_loss = torch.stack([x['loss'] for x in outputs]).mean()
|
425 |
-
|
426 |
-
self.log('train/epoch/loss', epoch_avg_loss, logger=True, on_epoch=True)
|
427 |
-
self.log('train/epoch/idx', self.current_epoch, logger=True, on_epoch=True)
|
428 |
-
self.log('train/epoch/time', self.current_epoch_time, logger=True, on_epoch=True)
|
429 |
-
self.log('train/epoch/time_avg', self.epoch_time_avg, logger=True, on_epoch=True)
|
430 |
-
self.log('train/epoch/time_avg_min', self.epoch_time_avg / 60, logger=True, on_epoch=True)
|
431 |
-
|
432 |
def _get_rows_from_list(self, samples):
|
433 |
n_imgs_per_row = len(samples)
|
434 |
-
denoise_grid = rearrange(samples, 'n b c
|
435 |
-
denoise_grid = rearrange(denoise_grid, 'b n c
|
436 |
-
denoise_grid = rearrange(denoise_grid, 'n c t h w -> (n t) c h w')
|
437 |
denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
|
438 |
return denoise_grid
|
439 |
|
440 |
@torch.no_grad()
|
441 |
-
def log_images(self, batch, N=8, n_row=2, sample=True, return_keys=None,
|
442 |
-
plot_diffusion_rows=True, plot_denoise_rows=True, **kwargs):
|
443 |
-
""" log images for DDPM """
|
444 |
log = dict()
|
445 |
x = self.get_input(batch, self.first_stage_key)
|
446 |
N = min(x.shape[0], N)
|
447 |
n_row = min(x.shape[0], n_row)
|
448 |
x = x.to(self.device)[:N]
|
449 |
log["inputs"] = x
|
450 |
-
if 'fps' in batch:
|
451 |
-
log['fps'] = batch['fps']
|
452 |
|
453 |
-
|
454 |
-
|
455 |
-
|
456 |
-
x_start = x[:n_row]
|
457 |
|
458 |
-
|
459 |
-
|
460 |
-
|
461 |
-
|
462 |
-
|
463 |
-
|
464 |
-
|
465 |
|
466 |
-
|
467 |
|
468 |
if sample:
|
469 |
# get denoise row
|
@@ -471,8 +314,7 @@ class DDPM(pl.LightningModule):
|
|
471 |
samples, denoise_row = self.sample(batch_size=N, return_intermediates=True)
|
472 |
|
473 |
log["samples"] = samples
|
474 |
-
|
475 |
-
log["denoise_row"] = self._get_rows_from_list(denoise_row)
|
476 |
|
477 |
if return_keys:
|
478 |
if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
|
@@ -481,14 +323,6 @@ class DDPM(pl.LightningModule):
|
|
481 |
return {key: log[key] for key in return_keys}
|
482 |
return log
|
483 |
|
484 |
-
def configure_optimizers(self):
|
485 |
-
lr = self.learning_rate
|
486 |
-
params = list(self.model.parameters())
|
487 |
-
if self.learn_logvar:
|
488 |
-
params = params + [self.logvar]
|
489 |
-
opt = torch.optim.AdamW(params, lr=lr)
|
490 |
-
return opt
|
491 |
-
|
492 |
|
493 |
class LatentDiffusion(DDPM):
|
494 |
"""main class"""
|
@@ -496,36 +330,51 @@ class LatentDiffusion(DDPM):
|
|
496 |
first_stage_config,
|
497 |
cond_stage_config,
|
498 |
num_timesteps_cond=None,
|
499 |
-
cond_stage_key="
|
500 |
cond_stage_trainable=False,
|
501 |
-
concat_mode=True,
|
502 |
cond_stage_forward=None,
|
503 |
conditioning_key=None,
|
|
|
|
|
504 |
scale_factor=1.0,
|
505 |
scale_by_std=False,
|
506 |
encoder_type="2d",
|
507 |
-
shift_factor=0.0,
|
508 |
-
split_clips=True,
|
509 |
-
downfactor_t=None,
|
510 |
-
clip_length=None,
|
511 |
only_model=False,
|
512 |
-
|
|
|
|
|
|
|
|
|
513 |
*args, **kwargs):
|
514 |
self.num_timesteps_cond = default(num_timesteps_cond, 1)
|
515 |
self.scale_by_std = scale_by_std
|
516 |
assert self.num_timesteps_cond <= kwargs['timesteps']
|
517 |
# for backwards compatibility after implementation of DiffusionWrapper
|
518 |
-
|
519 |
-
if conditioning_key is None:
|
520 |
-
conditioning_key = 'concat' if concat_mode else 'crossattn'
|
521 |
-
if cond_stage_config == '__is_unconditional__':
|
522 |
-
conditioning_key = None
|
523 |
ckpt_path = kwargs.pop("ckpt_path", None)
|
524 |
ignore_keys = kwargs.pop("ignore_keys", [])
|
|
|
525 |
super().__init__(conditioning_key=conditioning_key, *args, **kwargs)
|
526 |
-
|
527 |
self.cond_stage_trainable = cond_stage_trainable
|
528 |
self.cond_stage_key = cond_stage_key
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
529 |
try:
|
530 |
self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1
|
531 |
except:
|
@@ -536,71 +385,44 @@ class LatentDiffusion(DDPM):
|
|
536 |
self.register_buffer('scale_factor', torch.tensor(scale_factor))
|
537 |
self.instantiate_first_stage(first_stage_config)
|
538 |
self.instantiate_cond_stage(cond_stage_config)
|
539 |
-
self.cond_stage_forward = cond_stage_forward
|
540 |
-
self.clip_denoised = False
|
541 |
-
self.bbox_tokenizer = None
|
542 |
-
self.cond_stage_config = cond_stage_config
|
543 |
self.first_stage_config = first_stage_config
|
|
|
|
|
|
|
|
|
544 |
self.encoder_type = encoder_type
|
545 |
assert(encoder_type in ["2d", "3d"])
|
|
|
|
|
|
|
|
|
|
|
|
|
546 |
self.restarted_from_ckpt = False
|
547 |
-
self.shift_factor = shift_factor
|
548 |
if ckpt_path is not None:
|
549 |
self.init_from_ckpt(ckpt_path, ignore_keys, only_model=only_model)
|
550 |
self.restarted_from_ckpt = True
|
551 |
-
|
552 |
-
self.downfactor_t = downfactor_t
|
553 |
-
self.clip_length = clip_length
|
554 |
-
# lora related args
|
555 |
-
self.inject_unet = getattr(lora_args, "inject_unet", False)
|
556 |
-
self.inject_clip = getattr(lora_args, "inject_clip", False)
|
557 |
-
self.inject_unet_key_word = getattr(lora_args, "inject_unet_key_word", None)
|
558 |
-
self.inject_clip_key_word = getattr(lora_args, "inject_clip_key_word", None)
|
559 |
-
self.lora_rank = getattr(lora_args, "lora_rank", 4)
|
560 |
|
561 |
def make_cond_schedule(self, ):
|
562 |
self.cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long)
|
563 |
ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long()
|
564 |
self.cond_ids[:self.num_timesteps_cond] = ids
|
565 |
|
566 |
-
def
|
567 |
-
|
568 |
-
|
569 |
-
|
570 |
-
|
571 |
-
|
572 |
-
|
573 |
-
self.
|
574 |
-
|
575 |
-
scale=lora_scale
|
576 |
-
)
|
577 |
-
|
578 |
-
@rank_zero_only
|
579 |
-
@torch.no_grad()
|
580 |
-
def on_train_batch_start(self, batch, batch_idx, dataloader_idx=None):
|
581 |
-
# only for very first batch, reset the self.scale_factor
|
582 |
-
if self.scale_by_std and self.current_epoch == 0 and self.global_step == 0 and batch_idx == 0 and not self.restarted_from_ckpt:
|
583 |
-
assert self.scale_factor == 1., 'rather not use custom rescaling and std-rescaling simultaneously'
|
584 |
-
# set rescale weight to 1./std of encodings
|
585 |
-
print("### USING STD-RESCALING ###")
|
586 |
-
x = super().get_input(batch, self.first_stage_key)
|
587 |
-
x = x.to(self.device)
|
588 |
-
encoder_posterior = self.encode_first_stage(x)
|
589 |
-
z = self.get_first_stage_encoding(encoder_posterior).detach()
|
590 |
-
del self.scale_factor
|
591 |
-
self.register_buffer('scale_factor', 1. / z.flatten().std())
|
592 |
-
print(f"setting self.scale_factor to {self.scale_factor}")
|
593 |
-
print("### USING STD-RESCALING ###")
|
594 |
-
print(f"std={z.flatten().std()}")
|
595 |
-
|
596 |
-
def register_schedule(self,
|
597 |
-
given_betas=None, beta_schedule="linear", timesteps=1000,
|
598 |
-
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
599 |
-
super().register_schedule(given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s)
|
600 |
|
601 |
-
|
602 |
-
|
603 |
-
|
|
|
604 |
|
605 |
def instantiate_first_stage(self, config):
|
606 |
model = instantiate_from_config(config)
|
@@ -610,40 +432,16 @@ class LatentDiffusion(DDPM):
|
|
610 |
param.requires_grad = False
|
611 |
|
612 |
def instantiate_cond_stage(self, config):
|
613 |
-
if config is None:
|
614 |
-
self.cond_stage_model = None
|
615 |
-
return
|
616 |
if not self.cond_stage_trainable:
|
617 |
-
|
618 |
-
|
619 |
-
|
620 |
-
|
621 |
-
|
622 |
-
self.cond_stage_model = None
|
623 |
-
else:
|
624 |
-
model = instantiate_from_config(config)
|
625 |
-
self.cond_stage_model = model.eval()
|
626 |
-
self.cond_stage_model.train = disabled_train
|
627 |
-
for param in self.cond_stage_model.parameters():
|
628 |
-
param.requires_grad = False
|
629 |
else:
|
630 |
-
assert config != '__is_first_stage__'
|
631 |
-
assert config != '__is_unconditional__'
|
632 |
model = instantiate_from_config(config)
|
633 |
self.cond_stage_model = model
|
634 |
-
|
635 |
-
|
636 |
-
def get_first_stage_encoding(self, encoder_posterior, noise=None):
|
637 |
-
if isinstance(encoder_posterior, DiagonalGaussianDistribution):
|
638 |
-
z = encoder_posterior.sample(noise=noise)
|
639 |
-
elif isinstance(encoder_posterior, torch.Tensor):
|
640 |
-
z = encoder_posterior
|
641 |
-
else:
|
642 |
-
raise NotImplementedError(f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented")
|
643 |
-
z = self.scale_factor * (z + self.shift_factor)
|
644 |
-
return z
|
645 |
-
|
646 |
-
|
647 |
def get_learned_conditioning(self, c):
|
648 |
if self.cond_stage_forward is None:
|
649 |
if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode):
|
@@ -657,197 +455,61 @@ class LatentDiffusion(DDPM):
|
|
657 |
c = getattr(self.cond_stage_model, self.cond_stage_forward)(c)
|
658 |
return c
|
659 |
|
660 |
-
|
661 |
-
|
662 |
-
|
663 |
-
|
664 |
-
|
665 |
-
if cond_key is None:
|
666 |
-
cond_key = self.cond_stage_key
|
667 |
-
|
668 |
-
# get condition batch of different condition type
|
669 |
-
if cond_key != self.first_stage_key:
|
670 |
-
assert(cond_key in ["caption", "txt"])
|
671 |
-
xc = batch[cond_key]
|
672 |
-
else:
|
673 |
-
xc = x
|
674 |
-
|
675 |
-
# if static video
|
676 |
-
if self.static_video:
|
677 |
-
xc_ = [c + ' (static)' for c in xc]
|
678 |
-
xc = xc_
|
679 |
-
|
680 |
-
# get learned condition.
|
681 |
-
# can directly skip it: c = xc
|
682 |
-
if self.cond_stage_config is not None and (not self.cond_stage_trainable or force_c_encode):
|
683 |
-
if isinstance(xc, torch.Tensor):
|
684 |
-
xc = xc.to(self.device)
|
685 |
-
c = self.get_learned_conditioning(xc)
|
686 |
-
else:
|
687 |
-
c = xc
|
688 |
-
|
689 |
-
if self.classfier_free_guidance:
|
690 |
-
if cond_key in ['caption', "txt"] and self.uncond_type == 'empty_seq':
|
691 |
-
for i, ci in enumerate(c):
|
692 |
-
if random.random() < self.prob:
|
693 |
-
c[i] = ""
|
694 |
-
elif cond_key == 'class_label' and self.uncond_type == 'zero_embed':
|
695 |
-
pass
|
696 |
-
elif cond_key == 'class_label' and self.uncond_type == 'learned_embed':
|
697 |
-
import pdb;pdb.set_trace()
|
698 |
-
for i, ci in enumerate(c):
|
699 |
-
if random.random() < self.prob:
|
700 |
-
c[i]['class_label'] = self.n_classes
|
701 |
-
|
702 |
-
else:
|
703 |
-
raise NotImplementedError
|
704 |
-
|
705 |
-
if self.zero_cond_embed:
|
706 |
-
import pdb;pdb.set_trace()
|
707 |
-
c = torch.zeros_like(c)
|
708 |
-
|
709 |
-
# process c
|
710 |
-
if bs is not None:
|
711 |
-
if (is_imgs and not self.static_video):
|
712 |
-
c = c[:bs*self.temporal_length] # each random img (in T axis) has a corresponding prompt
|
713 |
-
else:
|
714 |
-
c = c[:bs]
|
715 |
-
|
716 |
else:
|
717 |
-
|
718 |
-
|
719 |
-
|
720 |
-
return c, xc
|
721 |
-
|
722 |
@torch.no_grad()
|
723 |
-
def
|
724 |
-
|
725 |
-
|
726 |
-
|
727 |
-
|
728 |
-
|
729 |
-
|
730 |
-
if is_imgs:
|
731 |
-
if self.static_video:
|
732 |
-
# repeat single img to a static video
|
733 |
-
x = x.unsqueeze(2) # bchw -> bc1hw
|
734 |
-
x = x.repeat(1,1,self.temporal_length,1,1) # bc1hw -> bcthw
|
735 |
-
else:
|
736 |
-
# rearrange to videos with T random img
|
737 |
-
bs_load = x.shape[0] // self.temporal_length
|
738 |
-
x = x[:bs_load*self.temporal_length, ...]
|
739 |
-
x = rearrange(x, '(b t) c h w -> b c t h w', t=self.temporal_length, b=bs_load)
|
740 |
-
|
741 |
-
if bs is not None:
|
742 |
-
x = x[:bs]
|
743 |
-
|
744 |
-
x = x.to(self.device)
|
745 |
-
x_ori = x
|
746 |
-
|
747 |
-
b, _, t, h, w = x.shape
|
748 |
-
|
749 |
-
# encode video frames x to z via a 2D encoder
|
750 |
-
x = rearrange(x, 'b c t h w -> (b t) c h w')
|
751 |
-
encoder_posterior = self.encode_first_stage(x, mask_temporal)
|
752 |
-
z = self.get_first_stage_encoding(encoder_posterior).detach()
|
753 |
-
z = rearrange(z, '(b t) c h w -> b c t h w', b=b, t=t)
|
754 |
-
|
755 |
|
756 |
-
|
757 |
-
|
758 |
|
759 |
-
if
|
760 |
-
|
761 |
-
out.extend([x_ori, xrec])
|
762 |
-
if return_original_cond:
|
763 |
-
if isinstance(xc, torch.Tensor) and xc.dim() == 4:
|
764 |
-
xc = rearrange(xc, '(b t) c h w -> b c t h w', b=b, t=t)
|
765 |
-
out.append(xc)
|
766 |
|
767 |
-
return out
|
768 |
-
|
769 |
-
@torch.no_grad()
|
770 |
-
def decode(self, z, **kwargs,):
|
771 |
-
z = 1. / self.scale_factor * z - self.shift_factor
|
772 |
-
results = self.first_stage_model.decode(z,**kwargs)
|
773 |
return results
|
774 |
|
775 |
@torch.no_grad()
|
776 |
-
def
|
777 |
-
b, _, t, _, _ = z.shape
|
778 |
-
z = rearrange(z, 'b c t h w -> (b t) c h w')
|
779 |
-
if decode_bs is None:
|
780 |
-
results = self.decode(z, **kwargs)
|
781 |
-
else:
|
782 |
-
z = torch.split(z, decode_bs, dim=0)
|
783 |
-
if return_cpu:
|
784 |
-
results = torch.cat([self.decode(z_, **kwargs).cpu() for z_ in z], dim=0)
|
785 |
-
else:
|
786 |
-
results = torch.cat([self.decode(z_, **kwargs) for z_ in z], dim=0)
|
787 |
-
results = rearrange(results, '(b t) c h w -> b c t h w', b=b,t=t).contiguous()
|
788 |
-
return results
|
789 |
-
|
790 |
-
@torch.no_grad()
|
791 |
-
def decode_first_stage(self, z, decode_bs=16, return_cpu=True, **kwargs):
|
792 |
-
assert(self.encoder_type == "2d" and z.dim() == 5)
|
793 |
-
return self.decode_first_stage_2DAE(z, decode_bs=decode_bs, return_cpu=return_cpu, **kwargs)
|
794 |
|
795 |
-
@torch.no_grad()
|
796 |
-
def encode_first_stage_2DAE(self, x, encode_bs=16):
|
797 |
b, _, t, _, _ = x.shape
|
798 |
-
|
799 |
-
|
800 |
-
results = self.first_stage_model.encode(x)
|
801 |
-
else:
|
802 |
-
x = torch.split(x, encode_bs, dim=0)
|
803 |
-
zs = []
|
804 |
-
for x_ in x:
|
805 |
-
encoder_posterior = self.first_stage_model.encode(x_)
|
806 |
-
z = self.get_first_stage_encoding(encoder_posterior).detach()
|
807 |
-
zs.append(z)
|
808 |
-
results = torch.cat(zs, dim=0)
|
809 |
-
results = rearrange(results, '(b t) c h w -> b c t h w', b=b,t=t)
|
810 |
return results
|
811 |
|
812 |
-
|
813 |
-
|
814 |
-
|
815 |
-
|
816 |
-
|
817 |
-
|
818 |
-
|
819 |
-
|
|
|
820 |
|
821 |
-
|
822 |
-
|
823 |
-
|
824 |
-
|
825 |
-
|
826 |
-
x, c = self.get_input(batch, self.first_stage_key)
|
827 |
-
loss = self(x, c)
|
828 |
-
return loss
|
829 |
-
|
830 |
-
def forward(self, x, c, *args, **kwargs):
|
831 |
-
start_t = getattr(self, "start_t", 0)
|
832 |
-
end_t = getattr(self, "end_t", self.num_timesteps)
|
833 |
-
t = torch.randint(start_t, end_t, (x.shape[0],), device=self.device).long()
|
834 |
-
|
835 |
-
if self.model.conditioning_key is not None:
|
836 |
-
assert c is not None
|
837 |
-
if self.cond_stage_trainable:
|
838 |
-
c = self.get_learned_conditioning(c)
|
839 |
-
if self.classfier_free_guidance and self.uncond_type == 'zero_embed':
|
840 |
-
for i, ci in enumerate(c):
|
841 |
-
if random.random() < self.prob:
|
842 |
-
c[i] = torch.zeros_like(c[i])
|
843 |
-
if self.shorten_cond_schedule: # TODO: drop this option
|
844 |
-
tc = self.cond_ids[t].to(self.device)
|
845 |
-
c = self.q_sample(x_start=c, t=tc, noise=torch.randn_like(c.float()))
|
846 |
-
|
847 |
-
return self.p_losses(x, c, t, *args, **kwargs)
|
848 |
|
849 |
-
|
|
|
|
|
850 |
|
|
|
851 |
if isinstance(cond, dict):
|
852 |
# hybrid case, cond is exptected to be a dict
|
853 |
pass
|
@@ -859,104 +521,55 @@ class LatentDiffusion(DDPM):
|
|
859 |
|
860 |
x_recon = self.model(x_noisy, t, **cond, **kwargs)
|
861 |
|
862 |
-
if isinstance(x_recon, tuple)
|
863 |
return x_recon[0]
|
864 |
else:
|
865 |
return x_recon
|
866 |
|
867 |
-
def
|
868 |
-
|
869 |
-
|
|
|
|
|
870 |
|
871 |
-
|
872 |
-
|
873 |
-
|
874 |
-
|
875 |
-
|
876 |
-
|
877 |
-
|
878 |
-
|
879 |
-
|
880 |
-
|
881 |
-
|
882 |
-
|
883 |
-
|
884 |
-
|
885 |
-
def p_losses(self, x_start, cond, t, noise=None, skip_qsample=False, x_noisy=None, cond_mask=None, **kwargs,):
|
886 |
-
if not skip_qsample:
|
887 |
-
noise = default(noise, lambda: torch.randn_like(x_start))
|
888 |
-
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
|
889 |
else:
|
890 |
-
|
891 |
-
assert(noise is not None)
|
892 |
-
model_output = self.apply_model(x_noisy, t, cond, **kwargs)
|
893 |
|
894 |
-
|
895 |
-
|
896 |
|
897 |
-
|
898 |
-
|
899 |
-
elif self.parameterization == "eps":
|
900 |
-
target = noise
|
901 |
-
else:
|
902 |
-
raise NotImplementedError()
|
903 |
-
|
904 |
-
loss_simple = self.get_loss(model_output, target, mean=False).mean([1, 2, 3, 4])
|
905 |
-
loss_dict.update({f'{prefix}/loss_simple': loss_simple.mean()})
|
906 |
-
if self.logvar.device != self.device:
|
907 |
-
self.logvar = self.logvar.to(self.device)
|
908 |
-
logvar_t = self.logvar[t]
|
909 |
-
loss = loss_simple / torch.exp(logvar_t) + logvar_t
|
910 |
-
if self.learn_logvar:
|
911 |
-
loss_dict.update({f'{prefix}/loss_gamma': loss.mean()})
|
912 |
-
loss_dict.update({'logvar': self.logvar.data.mean()})
|
913 |
|
914 |
-
|
|
|
|
|
915 |
|
916 |
-
|
917 |
-
loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean()
|
918 |
-
loss_dict.update({f'{prefix}/loss_vlb': loss_vlb})
|
919 |
-
loss += (self.original_elbo_weight * loss_vlb)
|
920 |
-
loss_dict.update({f'{prefix}/loss': loss})
|
921 |
|
922 |
-
return loss, loss_dict
|
923 |
|
924 |
-
def p_mean_variance(self, x, c, t, clip_denoised: bool,
|
925 |
-
return_x0=False, score_corrector=None, corrector_kwargs=None,
|
926 |
-
unconditional_guidance_scale=1., unconditional_conditioning=None,
|
927 |
-
uc_type=None,):
|
928 |
t_in = t
|
929 |
-
|
930 |
-
model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids)
|
931 |
-
else:
|
932 |
-
# with unconditional condition
|
933 |
-
if isinstance(c, torch.Tensor):
|
934 |
-
x_in = torch.cat([x] * 2)
|
935 |
-
t_in = torch.cat([t] * 2)
|
936 |
-
c_in = torch.cat([unconditional_conditioning, c])
|
937 |
-
model_out_uncond, model_out = self.apply_model(x_in, t_in, c_in, return_ids=return_codebook_ids).chunk(2)
|
938 |
-
elif isinstance(c, dict):
|
939 |
-
model_out = self.apply_model(x, t, c, return_ids=return_codebook_ids)
|
940 |
-
model_out_uncond = self.apply_model(x, t, unconditional_conditioning, return_ids=return_codebook_ids)
|
941 |
-
else:
|
942 |
-
raise NotImplementedError
|
943 |
-
if uc_type is None:
|
944 |
-
model_out = model_out_uncond + unconditional_guidance_scale * (model_out - model_out_uncond)
|
945 |
-
else:
|
946 |
-
if uc_type == 'cfg_original':
|
947 |
-
model_out = model_out + unconditional_guidance_scale * (model_out - model_out_uncond)
|
948 |
-
elif uc_type == 'cfg_ours':
|
949 |
-
model_out = model_out + unconditional_guidance_scale * (model_out_uncond - model_out)
|
950 |
-
else:
|
951 |
-
raise NotImplementedError
|
952 |
|
953 |
if score_corrector is not None:
|
954 |
assert self.parameterization == "eps"
|
955 |
model_out = score_corrector.modify_score(self, model_out, x, t, c, **corrector_kwargs)
|
956 |
|
957 |
-
if return_codebook_ids:
|
958 |
-
model_out, logits = model_out
|
959 |
-
|
960 |
if self.parameterization == "eps":
|
961 |
x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
|
962 |
elif self.parameterization == "x0":
|
@@ -966,34 +579,21 @@ class LatentDiffusion(DDPM):
|
|
966 |
|
967 |
if clip_denoised:
|
968 |
x_recon.clamp_(-1., 1.)
|
969 |
-
|
970 |
-
x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon)
|
971 |
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
|
972 |
-
|
973 |
-
|
974 |
-
elif return_x0:
|
975 |
return model_mean, posterior_variance, posterior_log_variance, x_recon
|
976 |
else:
|
977 |
return model_mean, posterior_variance, posterior_log_variance
|
978 |
|
979 |
@torch.no_grad()
|
980 |
-
def p_sample(self, x, c, t, clip_denoised=False, repeat_noise=False,
|
981 |
-
|
982 |
-
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
983 |
-
unconditional_guidance_scale=1., unconditional_conditioning=None,
|
984 |
-
uc_type=None,):
|
985 |
b, *_, device = *x.shape, x.device
|
986 |
-
outputs = self.p_mean_variance(x=x, c=c, t=t, clip_denoised=clip_denoised,
|
987 |
-
|
988 |
-
|
989 |
-
return_x0=return_x0,
|
990 |
-
score_corrector=score_corrector, corrector_kwargs=corrector_kwargs,
|
991 |
-
unconditional_guidance_scale=unconditional_guidance_scale,
|
992 |
-
unconditional_conditioning=unconditional_conditioning,
|
993 |
-
uc_type=uc_type,)
|
994 |
-
if return_codebook_ids:
|
995 |
-
raise DeprecationWarning("Support dropped.")
|
996 |
-
elif return_x0:
|
997 |
model_mean, _, model_log_variance, x0 = outputs
|
998 |
else:
|
999 |
model_mean, _, model_log_variance = outputs
|
@@ -1001,99 +601,35 @@ class LatentDiffusion(DDPM):
|
|
1001 |
noise = noise_like(x.shape, device, repeat_noise) * temperature
|
1002 |
if noise_dropout > 0.:
|
1003 |
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
1004 |
-
|
1005 |
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
|
1006 |
|
1007 |
-
if return_codebook_ids:
|
1008 |
-
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, logits.argmax(dim=1)
|
1009 |
if return_x0:
|
1010 |
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0
|
1011 |
else:
|
1012 |
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
|
1013 |
|
1014 |
@torch.no_grad()
|
1015 |
-
def
|
1016 |
-
|
1017 |
-
score_corrector=None, corrector_kwargs=None, batch_size=None, x_T=None, start_T=None,
|
1018 |
-
log_every_t=None):
|
1019 |
-
if not log_every_t:
|
1020 |
-
log_every_t = self.log_every_t
|
1021 |
-
timesteps = self.num_timesteps
|
1022 |
-
if batch_size is not None:
|
1023 |
-
b = batch_size if batch_size is not None else shape[0]
|
1024 |
-
shape = [batch_size] + list(shape)
|
1025 |
-
else:
|
1026 |
-
b = batch_size = shape[0]
|
1027 |
-
if x_T is None:
|
1028 |
-
img = torch.randn(shape, device=self.device)
|
1029 |
-
else:
|
1030 |
-
img = x_T
|
1031 |
-
intermediates = []
|
1032 |
-
if cond is not None:
|
1033 |
-
if isinstance(cond, dict):
|
1034 |
-
cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
|
1035 |
-
list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
|
1036 |
-
else:
|
1037 |
-
cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
|
1038 |
-
|
1039 |
-
if start_T is not None:
|
1040 |
-
timesteps = min(timesteps, start_T)
|
1041 |
-
iterator = tqdm(reversed(range(0, timesteps)), desc='Progressive Generation',
|
1042 |
-
total=timesteps) if verbose else reversed(
|
1043 |
-
range(0, timesteps))
|
1044 |
-
if type(temperature) == float:
|
1045 |
-
temperature = [temperature] * timesteps
|
1046 |
-
|
1047 |
-
for i in iterator:
|
1048 |
-
ts = torch.full((b,), i, device=self.device, dtype=torch.long)
|
1049 |
-
if self.shorten_cond_schedule:
|
1050 |
-
assert self.model.conditioning_key != 'hybrid'
|
1051 |
-
tc = self.cond_ids[ts].to(cond.device)
|
1052 |
-
cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
|
1053 |
-
|
1054 |
-
img, x0_partial = self.p_sample(img, cond, ts,
|
1055 |
-
clip_denoised=self.clip_denoised,
|
1056 |
-
quantize_denoised=quantize_denoised, return_x0=True,
|
1057 |
-
temperature=temperature[i], noise_dropout=noise_dropout,
|
1058 |
-
score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
|
1059 |
-
if mask is not None:
|
1060 |
-
assert x0 is not None
|
1061 |
-
img_orig = self.q_sample(x0, ts)
|
1062 |
-
img = img_orig * mask + (1. - mask) * img
|
1063 |
-
|
1064 |
-
if i % log_every_t == 0 or i == timesteps - 1:
|
1065 |
-
intermediates.append(x0_partial)
|
1066 |
-
if callback: callback(i)
|
1067 |
-
if img_callback: img_callback(img, i)
|
1068 |
-
return img, intermediates
|
1069 |
-
|
1070 |
-
@torch.no_grad()
|
1071 |
-
def p_sample_loop(self, cond, shape, return_intermediates=False,
|
1072 |
-
x_T=None, verbose=True, callback=None, timesteps=None, quantize_denoised=False,
|
1073 |
-
mask=None, x0=None, img_callback=None, start_T=None,
|
1074 |
-
log_every_t=None,
|
1075 |
-
unconditional_guidance_scale=1., unconditional_conditioning=None,
|
1076 |
-
uc_type=None,):
|
1077 |
|
1078 |
if not log_every_t:
|
1079 |
log_every_t = self.log_every_t
|
1080 |
device = self.betas.device
|
1081 |
-
b = shape[0]
|
1082 |
-
|
1083 |
# sample an initial noise
|
1084 |
if x_T is None:
|
1085 |
img = torch.randn(shape, device=device)
|
1086 |
else:
|
1087 |
img = x_T
|
1088 |
-
|
1089 |
intermediates = [img]
|
1090 |
if timesteps is None:
|
1091 |
timesteps = self.num_timesteps
|
1092 |
-
|
1093 |
if start_T is not None:
|
1094 |
timesteps = min(timesteps, start_T)
|
1095 |
-
|
1096 |
-
|
1097 |
|
1098 |
if mask is not None:
|
1099 |
assert x0 is not None
|
@@ -1106,12 +642,7 @@ class LatentDiffusion(DDPM):
|
|
1106 |
tc = self.cond_ids[ts].to(cond.device)
|
1107 |
cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
|
1108 |
|
1109 |
-
img = self.p_sample(img, cond, ts,
|
1110 |
-
clip_denoised=self.clip_denoised,
|
1111 |
-
quantize_denoised=quantize_denoised,
|
1112 |
-
unconditional_guidance_scale=unconditional_guidance_scale,
|
1113 |
-
unconditional_conditioning=unconditional_conditioning,
|
1114 |
-
uc_type=uc_type)
|
1115 |
if mask is not None:
|
1116 |
img_orig = self.q_sample(x0, ts)
|
1117 |
img = img_orig * mask + (1. - mask) * img
|
@@ -1125,253 +656,54 @@ class LatentDiffusion(DDPM):
|
|
1125 |
return img, intermediates
|
1126 |
return img
|
1127 |
|
1128 |
-
@torch.no_grad()
|
1129 |
-
def sample(self, cond, batch_size=16, return_intermediates=False, x_T=None,
|
1130 |
-
verbose=True, timesteps=None, quantize_denoised=False,
|
1131 |
-
mask=None, x0=None, shape=None, **kwargs):
|
1132 |
-
if shape is None:
|
1133 |
-
shape = (batch_size, self.channels, self.total_length, *self.image_size)
|
1134 |
-
if cond is not None:
|
1135 |
-
if isinstance(cond, dict):
|
1136 |
-
cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
|
1137 |
-
list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
|
1138 |
-
else:
|
1139 |
-
cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
|
1140 |
-
return self.p_sample_loop(cond,
|
1141 |
-
shape,
|
1142 |
-
return_intermediates=return_intermediates, x_T=x_T,
|
1143 |
-
verbose=verbose, timesteps=timesteps, quantize_denoised=quantize_denoised,
|
1144 |
-
mask=mask, x0=x0,)
|
1145 |
-
|
1146 |
-
@torch.no_grad()
|
1147 |
-
def sample_log(self,cond,batch_size,ddim, ddim_steps,**kwargs):
|
1148 |
-
|
1149 |
-
if ddim:
|
1150 |
-
ddim_sampler = DDIMSampler(self)
|
1151 |
-
shape = (self.channels, self.total_length, *self.image_size)
|
1152 |
-
samples, intermediates =ddim_sampler.sample(ddim_steps,batch_size,
|
1153 |
-
shape,cond,verbose=False, **kwargs)
|
1154 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1155 |
else:
|
1156 |
-
|
1157 |
-
|
|
|
|
|
1158 |
|
1159 |
-
|
1160 |
-
|
1161 |
-
|
1162 |
-
|
1163 |
-
|
1164 |
-
|
1165 |
-
c: condition after encoding.
|
1166 |
-
"""
|
1167 |
-
if x.dim() == 5:
|
1168 |
-
txt_img_shape = [x.shape[3], x.shape[4]]
|
1169 |
-
elif x.dim() == 4:
|
1170 |
-
txt_img_shape = [x.shape[2], x.shape[3]]
|
1171 |
-
else:
|
1172 |
-
raise ValueError
|
1173 |
-
if self.model.conditioning_key is not None: #concat-time-mask
|
1174 |
-
if hasattr(self.cond_stage_model, "decode"):
|
1175 |
-
xc = self.cond_stage_model.decode(c)
|
1176 |
-
log["conditioning"] = xc
|
1177 |
-
elif cond_stage_key in ["caption", "txt"]:
|
1178 |
-
log["conditioning_txt_img"] = log_txt_as_img(txt_img_shape, batch[cond_stage_key], size=x.shape[3]//25)
|
1179 |
-
log["conditioning_txt"] = batch[cond_stage_key]
|
1180 |
-
elif cond_stage_key == 'class_label':
|
1181 |
-
try:
|
1182 |
-
xc = log_txt_as_img(txt_img_shape, batch["human_label"], size=x.shape[3]//25)
|
1183 |
-
except:
|
1184 |
-
xc = log_txt_as_img(txt_img_shape, batch["class_name"], size=x.shape[3]//25)
|
1185 |
-
log['conditioning'] = xc
|
1186 |
-
elif isimage(xc):
|
1187 |
-
log["conditioning"] = xc
|
1188 |
-
if ismap(xc):
|
1189 |
-
log["original_conditioning"] = self.to_rgb(xc)
|
1190 |
-
if isinstance(c, dict) and 'mask' in c:
|
1191 |
-
log['mask'] =self.mask_to_rgb(c['mask'])
|
1192 |
-
return log
|
1193 |
-
|
1194 |
-
@torch.no_grad()
|
1195 |
-
def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., unconditional_guidance_scale=1.0,
|
1196 |
-
first_stage_key2=None, cond_key2=None,
|
1197 |
-
c=None,
|
1198 |
-
**kwargs):
|
1199 |
-
""" log images for LatentDiffusion """
|
1200 |
-
use_ddim = ddim_steps is not None
|
1201 |
-
is_imgs = first_stage_key2 is not None
|
1202 |
-
if is_imgs:
|
1203 |
-
assert(cond_key2 is not None)
|
1204 |
-
log = dict()
|
1205 |
-
|
1206 |
-
# get input
|
1207 |
-
z, c, x, xrec, xc = self.get_input(batch,
|
1208 |
-
k=self.first_stage_key if first_stage_key2 is None else first_stage_key2,
|
1209 |
-
return_first_stage_outputs=True,
|
1210 |
-
force_c_encode=True,
|
1211 |
-
return_original_cond=True,
|
1212 |
-
bs=N,
|
1213 |
-
cond_key=cond_key2 if cond_key2 is not None else None,
|
1214 |
-
)
|
1215 |
-
|
1216 |
-
N_ori = N
|
1217 |
-
N = min(z.shape[0], N)
|
1218 |
-
n_row = min(x.shape[0], n_row)
|
1219 |
|
1220 |
-
if unconditional_guidance_scale != 1.0:
|
1221 |
-
prompts = N * self.temporal_length * [""] if (is_imgs and not self.static_video) else N * [""]
|
1222 |
-
uc = self.get_condition_validate(prompts)
|
1223 |
-
|
1224 |
-
else:
|
1225 |
-
uc = None
|
1226 |
-
|
1227 |
-
log["inputs"] = x
|
1228 |
-
log["reconstruction"] = xrec
|
1229 |
-
log = self.log_condition(log, batch, xc, x, c,
|
1230 |
-
cond_stage_key=self.cond_stage_key if cond_key2 is None else cond_key2
|
1231 |
-
)
|
1232 |
-
|
1233 |
-
if sample:
|
1234 |
-
with self.ema_scope("Plotting"):
|
1235 |
-
samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim,
|
1236 |
-
ddim_steps=ddim_steps,eta=ddim_eta,
|
1237 |
-
temporal_length=self.video_length,
|
1238 |
-
unconditional_guidance_scale=unconditional_guidance_scale,
|
1239 |
-
unconditional_conditioning=uc, **kwargs,
|
1240 |
-
)
|
1241 |
-
# decode samples
|
1242 |
-
x_samples = self.decode_first_stage(samples)
|
1243 |
-
log["samples"] = x_samples
|
1244 |
-
return log
|
1245 |
-
|
1246 |
-
def configure_optimizers(self):
|
1247 |
-
""" configure_optimizers for LatentDiffusion """
|
1248 |
-
lr = self.learning_rate
|
1249 |
-
|
1250 |
-
# --------------------------------------------------------------------------------
|
1251 |
-
# set parameters
|
1252 |
-
if hasattr(self, "only_optimize_empty_parameters") and self.only_optimize_empty_parameters:
|
1253 |
-
print("[INFO] Optimize only empty parameters!")
|
1254 |
-
assert(hasattr(self, "empty_paras"))
|
1255 |
-
params = [p for n, p in self.model.named_parameters() if n in self.empty_paras]
|
1256 |
-
elif hasattr(self, "only_optimize_pretrained_parameters") and self.only_optimize_pretrained_parameters:
|
1257 |
-
print("[INFO] Optimize only pretrained parameters!")
|
1258 |
-
assert(hasattr(self, "empty_paras"))
|
1259 |
-
params = [p for n, p in self.model.named_parameters() if n not in self.empty_paras]
|
1260 |
-
assert(len(params) != 0)
|
1261 |
-
elif getattr(self, "optimize_empty_and_spatialattn", False):
|
1262 |
-
print("[INFO] Optimize empty parameters + spatial transformer!")
|
1263 |
-
assert(hasattr(self, "empty_paras"))
|
1264 |
-
empty_paras = [p for n, p in self.model.named_parameters() if n in self.empty_paras]
|
1265 |
-
SA_list = [".attn1.", ".attn2.", ".ff.", ".norm1.", ".norm2.", ".norm3."]
|
1266 |
-
SA_params = [p for n, p in self.model.named_parameters() if check_istarget(n, SA_list)]
|
1267 |
-
if getattr(self, "spatial_lr_decay", False):
|
1268 |
-
params = [
|
1269 |
-
{"params": empty_paras},
|
1270 |
-
{"params": SA_params, "lr": lr * self.spatial_lr_decay}
|
1271 |
-
]
|
1272 |
-
else:
|
1273 |
-
params = empty_paras + SA_params
|
1274 |
-
else:
|
1275 |
-
# optimize whole denoiser
|
1276 |
-
if hasattr(self, "spatial_lr_decay") and self.spatial_lr_decay:
|
1277 |
-
print("[INFO] Optimize the whole net with different lr!")
|
1278 |
-
print(f"[INFO] {lr} for empty paras, {lr * self.spatial_lr_decay} for pretrained paras!")
|
1279 |
-
empty_paras = [p for n, p in self.model.named_parameters() if n in self.empty_paras]
|
1280 |
-
# assert(len(empty_paras) == len(self.empty_paras)) # self.empty_paras:cond_stage_model.embedding.weight not in diffusion model params
|
1281 |
-
pretrained_paras = [p for n, p in self.model.named_parameters() if n not in self.empty_paras]
|
1282 |
-
params = [
|
1283 |
-
{"params": empty_paras},
|
1284 |
-
{"params": pretrained_paras, "lr": lr * self.spatial_lr_decay}
|
1285 |
-
]
|
1286 |
-
print(f"[INFO] Empty paras: {len(empty_paras)}, Pretrained paras: {len(pretrained_paras)}")
|
1287 |
-
|
1288 |
-
else:
|
1289 |
-
params = list(self.model.parameters())
|
1290 |
-
|
1291 |
-
if hasattr(self, "generator_trainable") and not self.generator_trainable:
|
1292 |
-
# fix unet denoiser
|
1293 |
-
params = list()
|
1294 |
-
|
1295 |
-
if self.inject_unet:
|
1296 |
-
params = itertools.chain(*self.lora_require_grad_params)
|
1297 |
-
|
1298 |
-
if self.inject_clip:
|
1299 |
-
if self.inject_unet:
|
1300 |
-
params = list(params)+list(itertools.chain(*self.lora_require_grad_params_clip))
|
1301 |
-
else:
|
1302 |
-
params = itertools.chain(*self.lora_require_grad_params_clip)
|
1303 |
-
|
1304 |
-
|
1305 |
-
# append paras
|
1306 |
-
# ------------------------------------------------------------------
|
1307 |
-
def add_cond_model(cond_model, params):
|
1308 |
-
if isinstance(params[0], dict):
|
1309 |
-
# parameter groups
|
1310 |
-
params.append({"params": list(cond_model.parameters())})
|
1311 |
-
else:
|
1312 |
-
# parameter list: [torch.nn.parameter.Parameter]
|
1313 |
-
params = params + list(cond_model.parameters())
|
1314 |
-
return params
|
1315 |
-
# ------------------------------------------------------------------
|
1316 |
-
|
1317 |
-
if self.cond_stage_trainable:
|
1318 |
-
# print(f"{self.__class__.__name__}: Also optimizing conditioner params!")
|
1319 |
-
params = add_cond_model(self.cond_stage_model, params)
|
1320 |
-
|
1321 |
-
if self.learn_logvar:
|
1322 |
-
print('Diffusion model optimizing logvar')
|
1323 |
-
if isinstance(params[0], dict):
|
1324 |
-
params.append({"params": [self.logvar]})
|
1325 |
-
else:
|
1326 |
-
params.append(self.logvar)
|
1327 |
-
|
1328 |
-
# --------------------------------------------------------------------------------
|
1329 |
-
opt = torch.optim.AdamW(params, lr=lr)
|
1330 |
-
|
1331 |
-
# lr scheduler
|
1332 |
-
if self.use_scheduler:
|
1333 |
-
assert 'target' in self.scheduler_config
|
1334 |
-
scheduler = instantiate_from_config(self.scheduler_config)
|
1335 |
-
|
1336 |
-
print("Setting up LambdaLR scheduler...")
|
1337 |
-
scheduler = [
|
1338 |
-
{
|
1339 |
-
'scheduler': LambdaLR(opt, lr_lambda=scheduler.schedule),
|
1340 |
-
'interval': 'step',
|
1341 |
-
'frequency': 1
|
1342 |
-
}]
|
1343 |
-
return [opt], scheduler
|
1344 |
-
|
1345 |
-
return opt
|
1346 |
-
|
1347 |
-
@torch.no_grad()
|
1348 |
-
def to_rgb(self, x):
|
1349 |
-
x = x.float()
|
1350 |
-
if not hasattr(self, "colorize"):
|
1351 |
-
self.colorize = torch.randn(3, x.shape[1], 1, 1).to(x)
|
1352 |
-
x = nn.functional.conv2d(x, weight=self.colorize)
|
1353 |
-
x = 2. * (x - x.min()) / (x.max() - x.min()) - 1.
|
1354 |
-
return x
|
1355 |
-
|
1356 |
-
@torch.no_grad()
|
1357 |
-
def mask_to_rgb(self, x):
|
1358 |
-
x = x * 255
|
1359 |
-
x = x.int()
|
1360 |
-
return x
|
1361 |
|
1362 |
class DiffusionWrapper(pl.LightningModule):
|
1363 |
def __init__(self, diff_model_config, conditioning_key):
|
1364 |
super().__init__()
|
1365 |
self.diffusion_model = instantiate_from_config(diff_model_config)
|
1366 |
-
print('Successfully initialize the diffusion model !')
|
1367 |
self.conditioning_key = conditioning_key
|
1368 |
-
# assert self.conditioning_key in [None, 'concat', 'crossattn', 'hybrid', 'adm', 'resblockcond', 'hybrid-adm', 'hybrid-time']
|
1369 |
|
1370 |
def forward(self, x, t, c_concat: list = None, c_crossattn: list = None,
|
1371 |
c_adm=None, s=None, mask=None, **kwargs):
|
1372 |
# temporal_context = fps is foNone
|
1373 |
if self.conditioning_key is None:
|
1374 |
-
out = self.diffusion_model(x, t
|
1375 |
elif self.conditioning_key == 'concat':
|
1376 |
xc = torch.cat([x] + c_concat, dim=1)
|
1377 |
out = self.diffusion_model(xc, t, **kwargs)
|
@@ -1379,106 +711,53 @@ class DiffusionWrapper(pl.LightningModule):
|
|
1379 |
cc = torch.cat(c_crossattn, 1)
|
1380 |
out = self.diffusion_model(x, t, context=cc, **kwargs)
|
1381 |
elif self.conditioning_key == 'hybrid':
|
|
|
1382 |
xc = torch.cat([x] + c_concat, dim=1)
|
1383 |
cc = torch.cat(c_crossattn, 1)
|
1384 |
-
out = self.diffusion_model(xc, t, context=cc
|
1385 |
elif self.conditioning_key == 'resblockcond':
|
1386 |
cc = c_crossattn[0]
|
1387 |
-
out = self.diffusion_model(x, t, context=cc
|
1388 |
elif self.conditioning_key == 'adm':
|
1389 |
cc = c_crossattn[0]
|
1390 |
-
out = self.diffusion_model(x, t, y=cc
|
1391 |
elif self.conditioning_key == 'hybrid-adm':
|
1392 |
assert c_adm is not None
|
1393 |
xc = torch.cat([x] + c_concat, dim=1)
|
1394 |
cc = torch.cat(c_crossattn, 1)
|
1395 |
-
out = self.diffusion_model(xc, t, context=cc, y=c_adm
|
1396 |
elif self.conditioning_key == 'hybrid-time':
|
1397 |
assert s is not None
|
1398 |
xc = torch.cat([x] + c_concat, dim=1)
|
1399 |
cc = torch.cat(c_crossattn, 1)
|
1400 |
-
out = self.diffusion_model(xc, t, context=cc, s=s
|
1401 |
elif self.conditioning_key == 'concat-time-mask':
|
1402 |
# assert s is not None
|
1403 |
-
#
|
1404 |
xc = torch.cat([x] + c_concat, dim=1)
|
1405 |
-
out = self.diffusion_model(xc, t, context=None, s=s, mask=mask
|
1406 |
elif self.conditioning_key == 'concat-adm-mask':
|
1407 |
# assert s is not None
|
1408 |
-
#
|
1409 |
if c_concat is not None:
|
1410 |
xc = torch.cat([x] + c_concat, dim=1)
|
1411 |
else:
|
1412 |
xc = x
|
1413 |
-
out = self.diffusion_model(xc, t, context=None, y=s, mask=mask
|
1414 |
-
elif self.conditioning_key == 'crossattn-adm':
|
1415 |
-
cc = torch.cat(c_crossattn, 1)
|
1416 |
-
out = self.diffusion_model(x, t, context=cc, y=s, **kwargs)
|
1417 |
elif self.conditioning_key == 'hybrid-adm-mask':
|
1418 |
cc = torch.cat(c_crossattn, 1)
|
1419 |
if c_concat is not None:
|
1420 |
xc = torch.cat([x] + c_concat, dim=1)
|
1421 |
else:
|
1422 |
xc = x
|
1423 |
-
out = self.diffusion_model(xc, t, context=cc, y=s, mask=mask
|
1424 |
elif self.conditioning_key == 'hybrid-time-adm': # adm means y, e.g., class index
|
1425 |
# assert s is not None
|
1426 |
assert c_adm is not None
|
1427 |
xc = torch.cat([x] + c_concat, dim=1)
|
1428 |
cc = torch.cat(c_crossattn, 1)
|
1429 |
-
out = self.diffusion_model(xc, t, context=cc, s=s, y=c_adm
|
1430 |
else:
|
1431 |
raise NotImplementedError()
|
1432 |
|
1433 |
-
return out
|
1434 |
-
|
1435 |
-
|
1436 |
-
class T2VAdapterDepth(LatentDiffusion):
|
1437 |
-
def __init__(self, depth_stage_config, adapter_config, *args, **kwargs):
|
1438 |
-
super(T2VAdapterDepth, self).__init__(*args, **kwargs)
|
1439 |
-
self.adapter = instantiate_from_config(adapter_config)
|
1440 |
-
self.condtype = adapter_config.cond_name
|
1441 |
-
self.depth_stage_model = instantiate_from_config(depth_stage_config)
|
1442 |
-
|
1443 |
-
def prepare_midas_input(self, batch_x):
|
1444 |
-
# input: b,c,h,w
|
1445 |
-
x_midas = torch.nn.functional.interpolate(batch_x, size=(384, 384), mode='bicubic')
|
1446 |
-
return x_midas
|
1447 |
-
|
1448 |
-
@torch.no_grad()
|
1449 |
-
def get_batch_depth(self, batch_x, target_size, encode_bs=1):
|
1450 |
-
b, c, t, h, w = batch_x.shape
|
1451 |
-
merge_x = rearrange(batch_x, 'b c t h w -> (b t) c h w')
|
1452 |
-
split_x = torch.split(merge_x, encode_bs, dim=0)
|
1453 |
-
cond_depth_list = []
|
1454 |
-
for x in split_x:
|
1455 |
-
x_midas = self.prepare_midas_input(x)
|
1456 |
-
cond_depth = self.depth_stage_model(x_midas)
|
1457 |
-
cond_depth = torch.nn.functional.interpolate(
|
1458 |
-
cond_depth,
|
1459 |
-
size=target_size,
|
1460 |
-
mode="bicubic",
|
1461 |
-
align_corners=False,
|
1462 |
-
)
|
1463 |
-
depth_min, depth_max = torch.amin(cond_depth, dim=[1, 2, 3], keepdim=True), torch.amax(cond_depth, dim=[1, 2, 3], keepdim=True)
|
1464 |
-
cond_depth = 2. * (cond_depth - depth_min) / (depth_max - depth_min + 1e-7) - 1.
|
1465 |
-
cond_depth_list.append(cond_depth)
|
1466 |
-
batch_cond_depth=torch.cat(cond_depth_list, dim=0)
|
1467 |
-
batch_cond_depth = rearrange(batch_cond_depth, '(b t) c h w -> b c t h w', b=b, t=t)
|
1468 |
-
return batch_cond_depth
|
1469 |
-
|
1470 |
-
def get_adapter_features(self, extra_cond, encode_bs=1):
|
1471 |
-
b, c, t, h, w = extra_cond.shape
|
1472 |
-
## process in 2D manner
|
1473 |
-
merge_extra_cond = rearrange(extra_cond, 'b c t h w -> (b t) c h w')
|
1474 |
-
split_extra_cond = torch.split(merge_extra_cond, encode_bs, dim=0)
|
1475 |
-
features_adapter_list = []
|
1476 |
-
for extra_cond in split_extra_cond:
|
1477 |
-
features_adapter = self.adapter(extra_cond)
|
1478 |
-
features_adapter_list.append(features_adapter)
|
1479 |
-
merge_features_adapter_list = []
|
1480 |
-
for i in range(len(features_adapter_list[0])):
|
1481 |
-
merge_features_adapter = torch.cat([features_adapter_list[num][i] for num in range(len(features_adapter_list))], dim=0)
|
1482 |
-
merge_features_adapter_list.append(merge_features_adapter)
|
1483 |
-
merge_features_adapter_list = [rearrange(feature, '(b t) c h w -> b c t h w', b=b, t=t) for feature in merge_features_adapter_list]
|
1484 |
-
return merge_features_adapter_list
|
|
|
1 |
+
"""
|
2 |
+
wild mixture of
|
3 |
+
https://github.com/openai/improved-diffusion/blob/e94489283bb876ac1477d5dd7709bbbd2d9902ce/improved_diffusion/gaussian_diffusion.py
|
4 |
+
https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
|
5 |
+
https://github.com/CompVis/taming-transformers
|
6 |
+
-- merci
|
7 |
+
"""
|
8 |
+
|
9 |
from functools import partial
|
10 |
from contextlib import contextmanager
|
|
|
11 |
import numpy as np
|
12 |
from tqdm import tqdm
|
13 |
from einops import rearrange, repeat
|
14 |
+
import logging
|
15 |
+
mainlogger = logging.getLogger('mainlogger')
|
16 |
import torch
|
17 |
import torch.nn as nn
|
|
|
18 |
from torchvision.utils import make_grid
|
19 |
+
import pytorch_lightning as pl
|
20 |
+
from utils.utils import instantiate_from_config
|
21 |
+
from lvdm.ema import LitEma
|
22 |
+
from lvdm.distributions import DiagonalGaussianDistribution
|
23 |
+
from lvdm.models.utils_diffusion import make_beta_schedule
|
24 |
+
from lvdm.modules.encoders.ip_resampler import ImageProjModel, Resampler
|
25 |
+
from lvdm.basics import disabled_train
|
26 |
+
from lvdm.common import (
|
27 |
+
extract_into_tensor,
|
28 |
+
noise_like,
|
29 |
+
exists,
|
30 |
+
default
|
31 |
+
)
|
32 |
+
|
33 |
+
|
34 |
+
__conditioning_keys__ = {'concat': 'c_concat',
|
35 |
+
'crossattn': 'c_crossattn',
|
36 |
+
'adm': 'y'}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
class DDPM(pl.LightningModule):
|
39 |
+
# classic DDPM with Gaussian diffusion, in image space
|
40 |
def __init__(self,
|
41 |
unet_config,
|
42 |
timesteps=1000,
|
|
|
45 |
ckpt_path=None,
|
46 |
ignore_keys=[],
|
47 |
load_only_unet=False,
|
48 |
+
monitor=None,
|
49 |
use_ema=True,
|
50 |
first_stage_key="image",
|
51 |
image_size=256,
|
|
|
52 |
channels=3,
|
53 |
log_every_t=100,
|
54 |
clip_denoised=True,
|
|
|
57 |
cosine_s=8e-3,
|
58 |
given_betas=None,
|
59 |
original_elbo_weight=0.,
|
60 |
+
v_posterior=0., # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta
|
61 |
l_simple_weight=1.,
|
62 |
conditioning_key=None,
|
63 |
+
parameterization="eps", # all assuming fixed variance schedules
|
64 |
scheduler_config=None,
|
65 |
+
use_positional_encodings=False,
|
66 |
learn_logvar=False,
|
67 |
+
logvar_init=0.
|
|
|
68 |
):
|
69 |
super().__init__()
|
70 |
assert parameterization in ["eps", "x0"], 'currently only supporting "eps" and "x0"'
|
71 |
self.parameterization = parameterization
|
72 |
+
mainlogger.info(f"{self.__class__.__name__}: Running in {self.parameterization}-prediction mode")
|
73 |
self.cond_stage_model = None
|
74 |
self.clip_denoised = clip_denoised
|
75 |
self.log_every_t = log_every_t
|
76 |
self.first_stage_key = first_stage_key
|
77 |
+
self.channels = channels
|
78 |
+
self.temporal_length = unet_config.params.temporal_length
|
79 |
+
self.image_size = image_size
|
80 |
if isinstance(self.image_size, int):
|
81 |
self.image_size = [self.image_size, self.image_size]
|
82 |
+
self.use_positional_encodings = use_positional_encodings
|
83 |
self.model = DiffusionWrapper(unet_config, conditioning_key)
|
|
|
|
|
|
|
|
|
84 |
self.use_ema = use_ema
|
85 |
+
if self.use_ema:
|
86 |
+
self.model_ema = LitEma(self.model)
|
87 |
+
mainlogger.info(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
|
88 |
+
|
89 |
self.use_scheduler = scheduler_config is not None
|
90 |
if self.use_scheduler:
|
91 |
self.scheduler_config = scheduler_config
|
|
|
109 |
if self.learn_logvar:
|
110 |
self.logvar = nn.Parameter(self.logvar, requires_grad=True)
|
111 |
|
112 |
+
|
113 |
def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000,
|
114 |
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
115 |
if exists(given_betas):
|
|
|
170 |
self.model_ema.store(self.model.parameters())
|
171 |
self.model_ema.copy_to(self.model)
|
172 |
if context is not None:
|
173 |
+
mainlogger.info(f"{context}: Switched to EMA weights")
|
174 |
try:
|
175 |
yield None
|
176 |
finally:
|
177 |
if self.use_ema:
|
178 |
self.model_ema.restore(self.model.parameters())
|
179 |
if context is not None:
|
180 |
+
mainlogger.info(f"{context}: Restored training weights")
|
181 |
|
182 |
def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
|
183 |
sd = torch.load(path, map_location="cpu")
|
|
|
186 |
keys = list(sd.keys())
|
187 |
for k in keys:
|
188 |
for ik in ignore_keys:
|
189 |
+
if k.startswith(ik):
|
190 |
+
mainlogger.info("Deleting key {} from state_dict.".format(k))
|
191 |
del sd[k]
|
192 |
missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
|
193 |
sd, strict=False)
|
194 |
+
mainlogger.info(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
|
195 |
if len(missing) > 0:
|
196 |
+
mainlogger.info(f"Missing Keys: {missing}")
|
197 |
if len(unexpected) > 0:
|
198 |
+
mainlogger.info(f"Unexpected Keys: {unexpected}")
|
199 |
|
200 |
def q_mean_variance(self, x_start, t):
|
201 |
"""
|
|
|
262 |
|
263 |
@torch.no_grad()
|
264 |
def sample(self, batch_size=16, return_intermediates=False):
|
265 |
+
image_size = self.image_size
|
266 |
channels = self.channels
|
267 |
+
return self.p_sample_loop((batch_size, channels, image_size, image_size),
|
|
|
|
|
268 |
return_intermediates=return_intermediates)
|
269 |
|
270 |
def q_sample(self, x_start, t, noise=None):
|
271 |
noise = default(noise, lambda: torch.randn_like(x_start))
|
272 |
+
return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start *
|
273 |
+
extract_into_tensor(self.scale_arr, t, x_start.shape) +
|
274 |
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
|
275 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
276 |
def get_input(self, batch, k):
|
277 |
x = batch[k]
|
278 |
x = x.to(memory_format=torch.contiguous_format).float()
|
279 |
return x
|
280 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
281 |
def _get_rows_from_list(self, samples):
|
282 |
n_imgs_per_row = len(samples)
|
283 |
+
denoise_grid = rearrange(samples, 'n b c h w -> b n c h w')
|
284 |
+
denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
|
|
|
285 |
denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
|
286 |
return denoise_grid
|
287 |
|
288 |
@torch.no_grad()
|
289 |
+
def log_images(self, batch, N=8, n_row=2, sample=True, return_keys=None, **kwargs):
|
|
|
|
|
290 |
log = dict()
|
291 |
x = self.get_input(batch, self.first_stage_key)
|
292 |
N = min(x.shape[0], N)
|
293 |
n_row = min(x.shape[0], n_row)
|
294 |
x = x.to(self.device)[:N]
|
295 |
log["inputs"] = x
|
|
|
|
|
296 |
|
297 |
+
# get diffusion row
|
298 |
+
diffusion_row = list()
|
299 |
+
x_start = x[:n_row]
|
|
|
300 |
|
301 |
+
for t in range(self.num_timesteps):
|
302 |
+
if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
|
303 |
+
t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
|
304 |
+
t = t.to(self.device).long()
|
305 |
+
noise = torch.randn_like(x_start)
|
306 |
+
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
|
307 |
+
diffusion_row.append(x_noisy)
|
308 |
|
309 |
+
log["diffusion_row"] = self._get_rows_from_list(diffusion_row)
|
310 |
|
311 |
if sample:
|
312 |
# get denoise row
|
|
|
314 |
samples, denoise_row = self.sample(batch_size=N, return_intermediates=True)
|
315 |
|
316 |
log["samples"] = samples
|
317 |
+
log["denoise_row"] = self._get_rows_from_list(denoise_row)
|
|
|
318 |
|
319 |
if return_keys:
|
320 |
if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
|
|
|
323 |
return {key: log[key] for key in return_keys}
|
324 |
return log
|
325 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
326 |
|
327 |
class LatentDiffusion(DDPM):
|
328 |
"""main class"""
|
|
|
330 |
first_stage_config,
|
331 |
cond_stage_config,
|
332 |
num_timesteps_cond=None,
|
333 |
+
cond_stage_key="caption",
|
334 |
cond_stage_trainable=False,
|
|
|
335 |
cond_stage_forward=None,
|
336 |
conditioning_key=None,
|
337 |
+
uncond_prob=0.2,
|
338 |
+
uncond_type="empty_seq",
|
339 |
scale_factor=1.0,
|
340 |
scale_by_std=False,
|
341 |
encoder_type="2d",
|
|
|
|
|
|
|
|
|
342 |
only_model=False,
|
343 |
+
use_scale=False,
|
344 |
+
scale_a=1,
|
345 |
+
scale_b=0.3,
|
346 |
+
mid_step=400,
|
347 |
+
fix_scale_bug=False,
|
348 |
*args, **kwargs):
|
349 |
self.num_timesteps_cond = default(num_timesteps_cond, 1)
|
350 |
self.scale_by_std = scale_by_std
|
351 |
assert self.num_timesteps_cond <= kwargs['timesteps']
|
352 |
# for backwards compatibility after implementation of DiffusionWrapper
|
|
|
|
|
|
|
|
|
|
|
353 |
ckpt_path = kwargs.pop("ckpt_path", None)
|
354 |
ignore_keys = kwargs.pop("ignore_keys", [])
|
355 |
+
conditioning_key = default(conditioning_key, 'crossattn')
|
356 |
super().__init__(conditioning_key=conditioning_key, *args, **kwargs)
|
357 |
+
|
358 |
self.cond_stage_trainable = cond_stage_trainable
|
359 |
self.cond_stage_key = cond_stage_key
|
360 |
+
|
361 |
+
# scale factor
|
362 |
+
self.use_scale=use_scale
|
363 |
+
if self.use_scale:
|
364 |
+
self.scale_a=scale_a
|
365 |
+
self.scale_b=scale_b
|
366 |
+
if fix_scale_bug:
|
367 |
+
scale_step=self.num_timesteps-mid_step
|
368 |
+
else: #bug
|
369 |
+
scale_step = self.num_timesteps
|
370 |
+
|
371 |
+
scale_arr1 = np.linspace(scale_a, scale_b, mid_step)
|
372 |
+
scale_arr2 = np.full(scale_step, scale_b)
|
373 |
+
scale_arr = np.concatenate((scale_arr1, scale_arr2))
|
374 |
+
scale_arr_prev = np.append(scale_a, scale_arr[:-1])
|
375 |
+
to_torch = partial(torch.tensor, dtype=torch.float32)
|
376 |
+
self.register_buffer('scale_arr', to_torch(scale_arr))
|
377 |
+
|
378 |
try:
|
379 |
self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1
|
380 |
except:
|
|
|
385 |
self.register_buffer('scale_factor', torch.tensor(scale_factor))
|
386 |
self.instantiate_first_stage(first_stage_config)
|
387 |
self.instantiate_cond_stage(cond_stage_config)
|
|
|
|
|
|
|
|
|
388 |
self.first_stage_config = first_stage_config
|
389 |
+
self.cond_stage_config = cond_stage_config
|
390 |
+
self.clip_denoised = False
|
391 |
+
|
392 |
+
self.cond_stage_forward = cond_stage_forward
|
393 |
self.encoder_type = encoder_type
|
394 |
assert(encoder_type in ["2d", "3d"])
|
395 |
+
self.uncond_prob = uncond_prob
|
396 |
+
self.classifier_free_guidance = True if uncond_prob > 0 else False
|
397 |
+
assert(uncond_type in ["zero_embed", "empty_seq"])
|
398 |
+
self.uncond_type = uncond_type
|
399 |
+
|
400 |
+
|
401 |
self.restarted_from_ckpt = False
|
|
|
402 |
if ckpt_path is not None:
|
403 |
self.init_from_ckpt(ckpt_path, ignore_keys, only_model=only_model)
|
404 |
self.restarted_from_ckpt = True
|
405 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
406 |
|
407 |
def make_cond_schedule(self, ):
|
408 |
self.cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long)
|
409 |
ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long()
|
410 |
self.cond_ids[:self.num_timesteps_cond] = ids
|
411 |
|
412 |
+
def q_sample(self, x_start, t, noise=None):
|
413 |
+
noise = default(noise, lambda: torch.randn_like(x_start))
|
414 |
+
if self.use_scale:
|
415 |
+
return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start *
|
416 |
+
extract_into_tensor(self.scale_arr, t, x_start.shape) +
|
417 |
+
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
|
418 |
+
else:
|
419 |
+
return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
|
420 |
+
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
421 |
|
422 |
+
|
423 |
+
def _freeze_model(self):
|
424 |
+
for name, para in self.model.diffusion_model.named_parameters():
|
425 |
+
para.requires_grad = False
|
426 |
|
427 |
def instantiate_first_stage(self, config):
|
428 |
model = instantiate_from_config(config)
|
|
|
432 |
param.requires_grad = False
|
433 |
|
434 |
def instantiate_cond_stage(self, config):
|
|
|
|
|
|
|
435 |
if not self.cond_stage_trainable:
|
436 |
+
model = instantiate_from_config(config)
|
437 |
+
self.cond_stage_model = model.eval()
|
438 |
+
self.cond_stage_model.train = disabled_train
|
439 |
+
for param in self.cond_stage_model.parameters():
|
440 |
+
param.requires_grad = False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
441 |
else:
|
|
|
|
|
442 |
model = instantiate_from_config(config)
|
443 |
self.cond_stage_model = model
|
444 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
445 |
def get_learned_conditioning(self, c):
|
446 |
if self.cond_stage_forward is None:
|
447 |
if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode):
|
|
|
455 |
c = getattr(self.cond_stage_model, self.cond_stage_forward)(c)
|
456 |
return c
|
457 |
|
458 |
+
def get_first_stage_encoding(self, encoder_posterior, noise=None):
|
459 |
+
if isinstance(encoder_posterior, DiagonalGaussianDistribution):
|
460 |
+
z = encoder_posterior.sample(noise=noise)
|
461 |
+
elif isinstance(encoder_posterior, torch.Tensor):
|
462 |
+
z = encoder_posterior
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
463 |
else:
|
464 |
+
raise NotImplementedError(f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented")
|
465 |
+
return self.scale_factor * z
|
466 |
+
|
|
|
|
|
467 |
@torch.no_grad()
|
468 |
+
def encode_first_stage(self, x):
|
469 |
+
if self.encoder_type == "2d" and x.dim() == 5:
|
470 |
+
b, _, t, _, _ = x.shape
|
471 |
+
x = rearrange(x, 'b c t h w -> (b t) c h w')
|
472 |
+
reshape_back = True
|
473 |
+
else:
|
474 |
+
reshape_back = False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
475 |
|
476 |
+
encoder_posterior = self.first_stage_model.encode(x)
|
477 |
+
results = self.get_first_stage_encoding(encoder_posterior).detach()
|
478 |
|
479 |
+
if reshape_back:
|
480 |
+
results = rearrange(results, '(b t) c h w -> b c t h w', b=b,t=t)
|
|
|
|
|
|
|
|
|
|
|
481 |
|
|
|
|
|
|
|
|
|
|
|
|
|
482 |
return results
|
483 |
|
484 |
@torch.no_grad()
|
485 |
+
def encode_first_stage_2DAE(self, x):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
486 |
|
|
|
|
|
487 |
b, _, t, _, _ = x.shape
|
488 |
+
results = torch.cat([self.get_first_stage_encoding(self.first_stage_model.encode(x[:,:,i])).detach().unsqueeze(2) for i in range(t)], dim=2)
|
489 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
490 |
return results
|
491 |
|
492 |
+
def decode_core(self, z, **kwargs):
|
493 |
+
if self.encoder_type == "2d" and z.dim() == 5:
|
494 |
+
b, _, t, _, _ = z.shape
|
495 |
+
z = rearrange(z, 'b c t h w -> (b t) c h w')
|
496 |
+
reshape_back = True
|
497 |
+
else:
|
498 |
+
reshape_back = False
|
499 |
+
|
500 |
+
z = 1. / self.scale_factor * z
|
501 |
|
502 |
+
results = self.first_stage_model.decode(z, **kwargs)
|
503 |
+
|
504 |
+
if reshape_back:
|
505 |
+
results = rearrange(results, '(b t) c h w -> b c t h w', b=b,t=t)
|
506 |
+
return results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
507 |
|
508 |
+
@torch.no_grad()
|
509 |
+
def decode_first_stage(self, z, **kwargs):
|
510 |
+
return self.decode_core(z, **kwargs)
|
511 |
|
512 |
+
def apply_model(self, x_noisy, t, cond, **kwargs):
|
513 |
if isinstance(cond, dict):
|
514 |
# hybrid case, cond is exptected to be a dict
|
515 |
pass
|
|
|
521 |
|
522 |
x_recon = self.model(x_noisy, t, **cond, **kwargs)
|
523 |
|
524 |
+
if isinstance(x_recon, tuple):
|
525 |
return x_recon[0]
|
526 |
else:
|
527 |
return x_recon
|
528 |
|
529 |
+
def _get_denoise_row_from_list(self, samples, desc=''):
|
530 |
+
denoise_row = []
|
531 |
+
for zd in tqdm(samples, desc=desc):
|
532 |
+
denoise_row.append(self.decode_first_stage(zd.to(self.device)))
|
533 |
+
n_log_timesteps = len(denoise_row)
|
534 |
|
535 |
+
denoise_row = torch.stack(denoise_row) # n_log_timesteps, b, C, H, W
|
536 |
+
|
537 |
+
if denoise_row.dim() == 5:
|
538 |
+
# img, num_imgs= n_log_timesteps * bs, grid_size=[bs,n_log_timesteps]
|
539 |
+
denoise_grid = rearrange(denoise_row, 'n b c h w -> b n c h w')
|
540 |
+
denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
|
541 |
+
denoise_grid = make_grid(denoise_grid, nrow=n_log_timesteps)
|
542 |
+
elif denoise_row.dim() == 6:
|
543 |
+
# video, grid_size=[n_log_timesteps*bs, t]
|
544 |
+
video_length = denoise_row.shape[3]
|
545 |
+
denoise_grid = rearrange(denoise_row, 'n b c t h w -> b n c t h w')
|
546 |
+
denoise_grid = rearrange(denoise_grid, 'b n c t h w -> (b n) c t h w')
|
547 |
+
denoise_grid = rearrange(denoise_grid, 'n c t h w -> (n t) c h w')
|
548 |
+
denoise_grid = make_grid(denoise_grid, nrow=video_length)
|
|
|
|
|
|
|
|
|
549 |
else:
|
550 |
+
raise ValueError
|
|
|
|
|
551 |
|
552 |
+
return denoise_grid
|
553 |
+
|
554 |
|
555 |
+
@torch.no_grad()
|
556 |
+
def decode_first_stage_2DAE(self, z, **kwargs):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
557 |
|
558 |
+
b, _, t, _, _ = z.shape
|
559 |
+
z = 1. / self.scale_factor * z
|
560 |
+
results = torch.cat([self.first_stage_model.decode(z[:,:,i], **kwargs).unsqueeze(2) for i in range(t)], dim=2)
|
561 |
|
562 |
+
return results
|
|
|
|
|
|
|
|
|
563 |
|
|
|
564 |
|
565 |
+
def p_mean_variance(self, x, c, t, clip_denoised: bool, return_x0=False, score_corrector=None, corrector_kwargs=None, **kwargs):
|
|
|
|
|
|
|
566 |
t_in = t
|
567 |
+
model_out = self.apply_model(x, t_in, c, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
568 |
|
569 |
if score_corrector is not None:
|
570 |
assert self.parameterization == "eps"
|
571 |
model_out = score_corrector.modify_score(self, model_out, x, t, c, **corrector_kwargs)
|
572 |
|
|
|
|
|
|
|
573 |
if self.parameterization == "eps":
|
574 |
x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
|
575 |
elif self.parameterization == "x0":
|
|
|
579 |
|
580 |
if clip_denoised:
|
581 |
x_recon.clamp_(-1., 1.)
|
582 |
+
|
|
|
583 |
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
|
584 |
+
|
585 |
+
if return_x0:
|
|
|
586 |
return model_mean, posterior_variance, posterior_log_variance, x_recon
|
587 |
else:
|
588 |
return model_mean, posterior_variance, posterior_log_variance
|
589 |
|
590 |
@torch.no_grad()
|
591 |
+
def p_sample(self, x, c, t, clip_denoised=False, repeat_noise=False, return_x0=False, \
|
592 |
+
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None, **kwargs):
|
|
|
|
|
|
|
593 |
b, *_, device = *x.shape, x.device
|
594 |
+
outputs = self.p_mean_variance(x=x, c=c, t=t, clip_denoised=clip_denoised, return_x0=return_x0, \
|
595 |
+
score_corrector=score_corrector, corrector_kwargs=corrector_kwargs, **kwargs)
|
596 |
+
if return_x0:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
597 |
model_mean, _, model_log_variance, x0 = outputs
|
598 |
else:
|
599 |
model_mean, _, model_log_variance = outputs
|
|
|
601 |
noise = noise_like(x.shape, device, repeat_noise) * temperature
|
602 |
if noise_dropout > 0.:
|
603 |
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
604 |
+
# no noise when t == 0
|
605 |
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
|
606 |
|
|
|
|
|
607 |
if return_x0:
|
608 |
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0
|
609 |
else:
|
610 |
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
|
611 |
|
612 |
@torch.no_grad()
|
613 |
+
def p_sample_loop(self, cond, shape, return_intermediates=False, x_T=None, verbose=True, callback=None, \
|
614 |
+
timesteps=None, mask=None, x0=None, img_callback=None, start_T=None, log_every_t=None, **kwargs):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
615 |
|
616 |
if not log_every_t:
|
617 |
log_every_t = self.log_every_t
|
618 |
device = self.betas.device
|
619 |
+
b = shape[0]
|
|
|
620 |
# sample an initial noise
|
621 |
if x_T is None:
|
622 |
img = torch.randn(shape, device=device)
|
623 |
else:
|
624 |
img = x_T
|
625 |
+
|
626 |
intermediates = [img]
|
627 |
if timesteps is None:
|
628 |
timesteps = self.num_timesteps
|
|
|
629 |
if start_T is not None:
|
630 |
timesteps = min(timesteps, start_T)
|
631 |
+
|
632 |
+
iterator = tqdm(reversed(range(0, timesteps)), desc='Sampling t', total=timesteps) if verbose else reversed(range(0, timesteps))
|
633 |
|
634 |
if mask is not None:
|
635 |
assert x0 is not None
|
|
|
642 |
tc = self.cond_ids[ts].to(cond.device)
|
643 |
cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
|
644 |
|
645 |
+
img = self.p_sample(img, cond, ts, clip_denoised=self.clip_denoised, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
646 |
if mask is not None:
|
647 |
img_orig = self.q_sample(x0, ts)
|
648 |
img = img_orig * mask + (1. - mask) * img
|
|
|
656 |
return img, intermediates
|
657 |
return img
|
658 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
659 |
|
660 |
+
class LatentVisualDiffusion(LatentDiffusion):
|
661 |
+
def __init__(self, cond_img_config, finegrained=False, random_cond=False, *args, **kwargs):
|
662 |
+
super().__init__(*args, **kwargs)
|
663 |
+
self.random_cond = random_cond
|
664 |
+
self.instantiate_img_embedder(cond_img_config, freeze=True)
|
665 |
+
num_tokens = 16 if finegrained else 4
|
666 |
+
self.image_proj_model = self.init_projector(use_finegrained=finegrained, num_tokens=num_tokens, input_dim=1024,\
|
667 |
+
cross_attention_dim=1024, dim=1280)
|
668 |
+
|
669 |
+
def instantiate_img_embedder(self, config, freeze=True):
|
670 |
+
embedder = instantiate_from_config(config)
|
671 |
+
if freeze:
|
672 |
+
self.embedder = embedder.eval()
|
673 |
+
self.embedder.train = disabled_train
|
674 |
+
for param in self.embedder.parameters():
|
675 |
+
param.requires_grad = False
|
676 |
+
|
677 |
+
def init_projector(self, use_finegrained, num_tokens, input_dim, cross_attention_dim, dim):
|
678 |
+
if not use_finegrained:
|
679 |
+
image_proj_model = ImageProjModel(clip_extra_context_tokens=num_tokens, cross_attention_dim=cross_attention_dim,
|
680 |
+
clip_embeddings_dim=input_dim
|
681 |
+
)
|
682 |
else:
|
683 |
+
image_proj_model = Resampler(dim=input_dim, depth=4, dim_head=64, heads=12, num_queries=num_tokens,
|
684 |
+
embedding_dim=dim, output_dim=cross_attention_dim, ff_mult=4
|
685 |
+
)
|
686 |
+
return image_proj_model
|
687 |
|
688 |
+
## Never delete this func: it is used in log_images() and inference stage
|
689 |
+
def get_image_embeds(self, batch_imgs):
|
690 |
+
## img: b c h w
|
691 |
+
img_token = self.embedder(batch_imgs)
|
692 |
+
img_emb = self.image_proj_model(img_token)
|
693 |
+
return img_emb
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
694 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
695 |
|
696 |
class DiffusionWrapper(pl.LightningModule):
|
697 |
def __init__(self, diff_model_config, conditioning_key):
|
698 |
super().__init__()
|
699 |
self.diffusion_model = instantiate_from_config(diff_model_config)
|
|
|
700 |
self.conditioning_key = conditioning_key
|
|
|
701 |
|
702 |
def forward(self, x, t, c_concat: list = None, c_crossattn: list = None,
|
703 |
c_adm=None, s=None, mask=None, **kwargs):
|
704 |
# temporal_context = fps is foNone
|
705 |
if self.conditioning_key is None:
|
706 |
+
out = self.diffusion_model(x, t)
|
707 |
elif self.conditioning_key == 'concat':
|
708 |
xc = torch.cat([x] + c_concat, dim=1)
|
709 |
out = self.diffusion_model(xc, t, **kwargs)
|
|
|
711 |
cc = torch.cat(c_crossattn, 1)
|
712 |
out = self.diffusion_model(x, t, context=cc, **kwargs)
|
713 |
elif self.conditioning_key == 'hybrid':
|
714 |
+
## it is just right [b,c,t,h,w]: concatenate in channel dim
|
715 |
xc = torch.cat([x] + c_concat, dim=1)
|
716 |
cc = torch.cat(c_crossattn, 1)
|
717 |
+
out = self.diffusion_model(xc, t, context=cc)
|
718 |
elif self.conditioning_key == 'resblockcond':
|
719 |
cc = c_crossattn[0]
|
720 |
+
out = self.diffusion_model(x, t, context=cc)
|
721 |
elif self.conditioning_key == 'adm':
|
722 |
cc = c_crossattn[0]
|
723 |
+
out = self.diffusion_model(x, t, y=cc)
|
724 |
elif self.conditioning_key == 'hybrid-adm':
|
725 |
assert c_adm is not None
|
726 |
xc = torch.cat([x] + c_concat, dim=1)
|
727 |
cc = torch.cat(c_crossattn, 1)
|
728 |
+
out = self.diffusion_model(xc, t, context=cc, y=c_adm)
|
729 |
elif self.conditioning_key == 'hybrid-time':
|
730 |
assert s is not None
|
731 |
xc = torch.cat([x] + c_concat, dim=1)
|
732 |
cc = torch.cat(c_crossattn, 1)
|
733 |
+
out = self.diffusion_model(xc, t, context=cc, s=s)
|
734 |
elif self.conditioning_key == 'concat-time-mask':
|
735 |
# assert s is not None
|
736 |
+
# mainlogger.info('x & mask:',x.shape,c_concat[0].shape)
|
737 |
xc = torch.cat([x] + c_concat, dim=1)
|
738 |
+
out = self.diffusion_model(xc, t, context=None, s=s, mask=mask)
|
739 |
elif self.conditioning_key == 'concat-adm-mask':
|
740 |
# assert s is not None
|
741 |
+
# mainlogger.info('x & mask:',x.shape,c_concat[0].shape)
|
742 |
if c_concat is not None:
|
743 |
xc = torch.cat([x] + c_concat, dim=1)
|
744 |
else:
|
745 |
xc = x
|
746 |
+
out = self.diffusion_model(xc, t, context=None, y=s, mask=mask)
|
|
|
|
|
|
|
747 |
elif self.conditioning_key == 'hybrid-adm-mask':
|
748 |
cc = torch.cat(c_crossattn, 1)
|
749 |
if c_concat is not None:
|
750 |
xc = torch.cat([x] + c_concat, dim=1)
|
751 |
else:
|
752 |
xc = x
|
753 |
+
out = self.diffusion_model(xc, t, context=cc, y=s, mask=mask)
|
754 |
elif self.conditioning_key == 'hybrid-time-adm': # adm means y, e.g., class index
|
755 |
# assert s is not None
|
756 |
assert c_adm is not None
|
757 |
xc = torch.cat([x] + c_concat, dim=1)
|
758 |
cc = torch.cat(c_crossattn, 1)
|
759 |
+
out = self.diffusion_model(xc, t, context=cc, s=s, y=c_adm)
|
760 |
else:
|
761 |
raise NotImplementedError()
|
762 |
|
763 |
+
return out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lvdm/models/modules/adapter.py
DELETED
@@ -1,105 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
from collections import OrderedDict
|
4 |
-
from lvdm.models.modules.util import (
|
5 |
-
zero_module,
|
6 |
-
conv_nd,
|
7 |
-
avg_pool_nd
|
8 |
-
)
|
9 |
-
|
10 |
-
class Downsample(nn.Module):
|
11 |
-
"""
|
12 |
-
A downsampling layer with an optional convolution.
|
13 |
-
:param channels: channels in the inputs and outputs.
|
14 |
-
:param use_conv: a bool determining if a convolution is applied.
|
15 |
-
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
16 |
-
downsampling occurs in the inner-two dimensions.
|
17 |
-
"""
|
18 |
-
|
19 |
-
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
|
20 |
-
super().__init__()
|
21 |
-
self.channels = channels
|
22 |
-
self.out_channels = out_channels or channels
|
23 |
-
self.use_conv = use_conv
|
24 |
-
self.dims = dims
|
25 |
-
stride = 2 if dims != 3 else (1, 2, 2)
|
26 |
-
if use_conv:
|
27 |
-
self.op = conv_nd(
|
28 |
-
dims, self.channels, self.out_channels, 3, stride=stride, padding=padding
|
29 |
-
)
|
30 |
-
else:
|
31 |
-
assert self.channels == self.out_channels
|
32 |
-
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
|
33 |
-
|
34 |
-
def forward(self, x):
|
35 |
-
assert x.shape[1] == self.channels
|
36 |
-
return self.op(x)
|
37 |
-
|
38 |
-
|
39 |
-
class ResnetBlock(nn.Module):
|
40 |
-
def __init__(self, in_c, out_c, down, ksize=3, sk=False, use_conv=True):
|
41 |
-
super().__init__()
|
42 |
-
ps = ksize // 2
|
43 |
-
if in_c != out_c or sk == False:
|
44 |
-
self.in_conv = nn.Conv2d(in_c, out_c, ksize, 1, ps)
|
45 |
-
else:
|
46 |
-
# print('n_in')
|
47 |
-
self.in_conv = None
|
48 |
-
self.block1 = nn.Conv2d(out_c, out_c, 3, 1, 1)
|
49 |
-
self.act = nn.ReLU()
|
50 |
-
self.block2 = nn.Conv2d(out_c, out_c, ksize, 1, ps)
|
51 |
-
if sk == False:
|
52 |
-
self.skep = nn.Conv2d(in_c, out_c, ksize, 1, ps)
|
53 |
-
else:
|
54 |
-
self.skep = None
|
55 |
-
|
56 |
-
self.down = down
|
57 |
-
if self.down == True:
|
58 |
-
self.down_opt = Downsample(in_c, use_conv=use_conv)
|
59 |
-
|
60 |
-
def forward(self, x):
|
61 |
-
if self.down == True:
|
62 |
-
x = self.down_opt(x)
|
63 |
-
if self.in_conv is not None: # edit
|
64 |
-
x = self.in_conv(x)
|
65 |
-
|
66 |
-
h = self.block1(x)
|
67 |
-
h = self.act(h)
|
68 |
-
h = self.block2(h)
|
69 |
-
if self.skep is not None:
|
70 |
-
return h + self.skep(x)
|
71 |
-
else:
|
72 |
-
return h + x
|
73 |
-
|
74 |
-
|
75 |
-
class Adapter(nn.Module):
|
76 |
-
def __init__(self, channels=[320, 640, 1280, 1280], nums_rb=3, cin=64, ksize=3, sk=False, use_conv=True):
|
77 |
-
super(Adapter, self).__init__()
|
78 |
-
self.unshuffle = nn.PixelUnshuffle(8)
|
79 |
-
self.channels = channels
|
80 |
-
self.nums_rb = nums_rb
|
81 |
-
self.body = []
|
82 |
-
for i in range(len(channels)):
|
83 |
-
for j in range(nums_rb):
|
84 |
-
if (i != 0) and (j == 0):
|
85 |
-
self.body.append(
|
86 |
-
ResnetBlock(channels[i - 1], channels[i], down=True, ksize=ksize, sk=sk, use_conv=use_conv))
|
87 |
-
else:
|
88 |
-
self.body.append(
|
89 |
-
ResnetBlock(channels[i], channels[i], down=False, ksize=ksize, sk=sk, use_conv=use_conv))
|
90 |
-
self.body = nn.ModuleList(self.body)
|
91 |
-
self.conv_in = nn.Conv2d(cin, channels[0], 3, 1, 1)
|
92 |
-
|
93 |
-
def forward(self, x):
|
94 |
-
# unshuffle
|
95 |
-
x = self.unshuffle(x)
|
96 |
-
# extract features
|
97 |
-
features = []
|
98 |
-
x = self.conv_in(x)
|
99 |
-
for i in range(len(self.channels)):
|
100 |
-
for j in range(self.nums_rb):
|
101 |
-
idx = i * self.nums_rb + j
|
102 |
-
x = self.body[idx](x)
|
103 |
-
features.append(x)
|
104 |
-
|
105 |
-
return features
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lvdm/models/modules/attention_temporal.py
DELETED
@@ -1,399 +0,0 @@
|
|
1 |
-
from typing import Optional, Any
|
2 |
-
|
3 |
-
import torch
|
4 |
-
import torch as th
|
5 |
-
from torch import nn, einsum
|
6 |
-
from einops import rearrange, repeat
|
7 |
-
try:
|
8 |
-
import xformers
|
9 |
-
import xformers.ops
|
10 |
-
XFORMERS_IS_AVAILBLE = True
|
11 |
-
except:
|
12 |
-
XFORMERS_IS_AVAILBLE = False
|
13 |
-
|
14 |
-
from lvdm.models.modules.util import (
|
15 |
-
GEGLU,
|
16 |
-
exists,
|
17 |
-
default,
|
18 |
-
Normalize,
|
19 |
-
checkpoint,
|
20 |
-
zero_module,
|
21 |
-
)
|
22 |
-
|
23 |
-
|
24 |
-
# ---------------------------------------------------------------------------------------------------
|
25 |
-
class FeedForward(nn.Module):
|
26 |
-
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
|
27 |
-
super().__init__()
|
28 |
-
inner_dim = int(dim * mult)
|
29 |
-
dim_out = default(dim_out, dim)
|
30 |
-
project_in = nn.Sequential(
|
31 |
-
nn.Linear(dim, inner_dim),
|
32 |
-
nn.GELU()
|
33 |
-
) if not glu else GEGLU(dim, inner_dim)
|
34 |
-
|
35 |
-
self.net = nn.Sequential(
|
36 |
-
project_in,
|
37 |
-
nn.Dropout(dropout),
|
38 |
-
nn.Linear(inner_dim, dim_out)
|
39 |
-
)
|
40 |
-
|
41 |
-
def forward(self, x):
|
42 |
-
return self.net(x)
|
43 |
-
|
44 |
-
|
45 |
-
# ---------------------------------------------------------------------------------------------------
|
46 |
-
class RelativePosition(nn.Module):
|
47 |
-
""" https://github.com/evelinehong/Transformer_Relative_Position_PyTorch/blob/master/relative_position.py """
|
48 |
-
|
49 |
-
def __init__(self, num_units, max_relative_position):
|
50 |
-
super().__init__()
|
51 |
-
self.num_units = num_units
|
52 |
-
self.max_relative_position = max_relative_position
|
53 |
-
self.embeddings_table = nn.Parameter(th.Tensor(max_relative_position * 2 + 1, num_units))
|
54 |
-
nn.init.xavier_uniform_(self.embeddings_table)
|
55 |
-
|
56 |
-
def forward(self, length_q, length_k):
|
57 |
-
device = self.embeddings_table.device
|
58 |
-
range_vec_q = th.arange(length_q, device=device)
|
59 |
-
range_vec_k = th.arange(length_k, device=device)
|
60 |
-
distance_mat = range_vec_k[None, :] - range_vec_q[:, None]
|
61 |
-
distance_mat_clipped = th.clamp(distance_mat, -self.max_relative_position, self.max_relative_position)
|
62 |
-
final_mat = distance_mat_clipped + self.max_relative_position
|
63 |
-
final_mat = final_mat.long()
|
64 |
-
embeddings = self.embeddings_table[final_mat]
|
65 |
-
return embeddings
|
66 |
-
|
67 |
-
|
68 |
-
# ---------------------------------------------------------------------------------------------------
|
69 |
-
class TemporalCrossAttention(nn.Module):
|
70 |
-
def __init__(self,
|
71 |
-
query_dim,
|
72 |
-
context_dim=None,
|
73 |
-
heads=8,
|
74 |
-
dim_head=64,
|
75 |
-
dropout=0.,
|
76 |
-
use_relative_position=False, # whether use relative positional representation in temporal attention.
|
77 |
-
temporal_length=None, # relative positional representation
|
78 |
-
**kwargs,
|
79 |
-
):
|
80 |
-
super().__init__()
|
81 |
-
inner_dim = dim_head * heads
|
82 |
-
context_dim = default(context_dim, query_dim)
|
83 |
-
self.context_dim = context_dim
|
84 |
-
self.scale = dim_head ** -0.5
|
85 |
-
self.heads = heads
|
86 |
-
self.temporal_length = temporal_length
|
87 |
-
self.use_relative_position = use_relative_position
|
88 |
-
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
89 |
-
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
90 |
-
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
91 |
-
self.to_out = nn.Sequential(
|
92 |
-
nn.Linear(inner_dim, query_dim),
|
93 |
-
nn.Dropout(dropout)
|
94 |
-
)
|
95 |
-
|
96 |
-
if use_relative_position:
|
97 |
-
assert(temporal_length is not None)
|
98 |
-
self.relative_position_k = RelativePosition(num_units=dim_head, max_relative_position=temporal_length)
|
99 |
-
self.relative_position_v = RelativePosition(num_units=dim_head, max_relative_position=temporal_length)
|
100 |
-
|
101 |
-
nn.init.constant_(self.to_q.weight, 0)
|
102 |
-
nn.init.constant_(self.to_k.weight, 0)
|
103 |
-
nn.init.constant_(self.to_v.weight, 0)
|
104 |
-
nn.init.constant_(self.to_out[0].weight, 0)
|
105 |
-
nn.init.constant_(self.to_out[0].bias, 0)
|
106 |
-
|
107 |
-
def forward(self, x, context=None, mask=None):
|
108 |
-
nh = self.heads
|
109 |
-
out = x
|
110 |
-
|
111 |
-
# cal qkv
|
112 |
-
q = self.to_q(out)
|
113 |
-
context = default(context, x)
|
114 |
-
k = self.to_k(context)
|
115 |
-
v = self.to_v(context)
|
116 |
-
|
117 |
-
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=nh), (q, k, v))
|
118 |
-
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
|
119 |
-
|
120 |
-
# relative positional embedding
|
121 |
-
if self.use_relative_position:
|
122 |
-
len_q, len_k, len_v = q.shape[1], k.shape[1], v.shape[1]
|
123 |
-
k2 = self.relative_position_k(len_q, len_k)
|
124 |
-
sim2 = einsum('b t d, t s d -> b t s', q, k2) * self.scale
|
125 |
-
sim += sim2
|
126 |
-
|
127 |
-
# mask attention
|
128 |
-
if mask is not None:
|
129 |
-
max_neg_value = -1e9
|
130 |
-
sim = sim + (1-mask.float()) * max_neg_value # 1=masking,0=no masking
|
131 |
-
|
132 |
-
# attend to values
|
133 |
-
attn = sim.softmax(dim=-1)
|
134 |
-
out = einsum('b i j, b j d -> b i d', attn, v)
|
135 |
-
|
136 |
-
# relative positional embedding
|
137 |
-
if self.use_relative_position:
|
138 |
-
v2 = self.relative_position_v(len_q, len_v)
|
139 |
-
out2 = einsum('b t s, t s d -> b t d', attn, v2)
|
140 |
-
out += out2
|
141 |
-
|
142 |
-
# merge head
|
143 |
-
out = rearrange(out, '(b h) n d -> b n (h d)', h=nh)
|
144 |
-
return self.to_out(out)
|
145 |
-
|
146 |
-
|
147 |
-
# ---------------------------------------------------------------------------------------------------
|
148 |
-
class CrossAttention(nn.Module):
|
149 |
-
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.,
|
150 |
-
**kwargs,):
|
151 |
-
super().__init__()
|
152 |
-
inner_dim = dim_head * heads
|
153 |
-
context_dim = default(context_dim, query_dim)
|
154 |
-
|
155 |
-
self.scale = dim_head ** -0.5
|
156 |
-
self.heads = heads
|
157 |
-
|
158 |
-
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
159 |
-
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
160 |
-
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
161 |
-
|
162 |
-
self.to_out = nn.Sequential(
|
163 |
-
nn.Linear(inner_dim, query_dim),
|
164 |
-
nn.Dropout(dropout)
|
165 |
-
)
|
166 |
-
|
167 |
-
def forward(self, x, context=None, mask=None):
|
168 |
-
h = self.heads
|
169 |
-
b = x.shape[0]
|
170 |
-
|
171 |
-
q = self.to_q(x)
|
172 |
-
context = default(context, x)
|
173 |
-
k = self.to_k(context)
|
174 |
-
v = self.to_v(context)
|
175 |
-
|
176 |
-
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
|
177 |
-
|
178 |
-
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
|
179 |
-
|
180 |
-
if exists(mask):
|
181 |
-
mask = rearrange(mask, 'b ... -> b (...)')
|
182 |
-
max_neg_value = -torch.finfo(sim.dtype).max
|
183 |
-
mask = repeat(mask, 'b j -> (b h) () j', h=h)
|
184 |
-
sim.masked_fill_(~mask, max_neg_value)
|
185 |
-
|
186 |
-
attn = sim.softmax(dim=-1)
|
187 |
-
|
188 |
-
out = einsum('b i j, b j d -> b i d', attn, v)
|
189 |
-
out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
|
190 |
-
return self.to_out(out)
|
191 |
-
|
192 |
-
|
193 |
-
# ---------------------------------------------------------------------------------------------------
|
194 |
-
class MemoryEfficientCrossAttention(nn.Module):
|
195 |
-
"""https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
|
196 |
-
"""
|
197 |
-
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0,
|
198 |
-
**kwargs,):
|
199 |
-
super().__init__()
|
200 |
-
print(f"Setting up {self.__class__.__name__}. Query dim is {query_dim}, context_dim is {context_dim} and using "
|
201 |
-
f"{heads} heads."
|
202 |
-
)
|
203 |
-
inner_dim = dim_head * heads
|
204 |
-
context_dim = default(context_dim, query_dim)
|
205 |
-
|
206 |
-
self.heads = heads
|
207 |
-
self.dim_head = dim_head
|
208 |
-
|
209 |
-
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
210 |
-
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
211 |
-
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
212 |
-
|
213 |
-
self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout))
|
214 |
-
self.attention_op: Optional[Any] = None
|
215 |
-
|
216 |
-
def forward(self, x, context=None, mask=None):
|
217 |
-
q = self.to_q(x)
|
218 |
-
context = default(context, x)
|
219 |
-
k = self.to_k(context)
|
220 |
-
v = self.to_v(context)
|
221 |
-
|
222 |
-
b, _, _ = q.shape
|
223 |
-
q, k, v = map(
|
224 |
-
lambda t: t.unsqueeze(3)
|
225 |
-
.reshape(b, t.shape[1], self.heads, self.dim_head)
|
226 |
-
.permute(0, 2, 1, 3)
|
227 |
-
.reshape(b * self.heads, t.shape[1], self.dim_head)
|
228 |
-
.contiguous(),
|
229 |
-
(q, k, v),
|
230 |
-
)
|
231 |
-
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=self.attention_op)
|
232 |
-
|
233 |
-
if exists(mask):
|
234 |
-
raise NotImplementedError
|
235 |
-
out = (
|
236 |
-
out.unsqueeze(0)
|
237 |
-
.reshape(b, self.heads, out.shape[1], self.dim_head)
|
238 |
-
.permute(0, 2, 1, 3)
|
239 |
-
.reshape(b, out.shape[1], self.heads * self.dim_head)
|
240 |
-
)
|
241 |
-
return self.to_out(out)
|
242 |
-
|
243 |
-
|
244 |
-
# ---------------------------------------------------------------------------------------------------
|
245 |
-
class BasicTransformerBlockST(nn.Module):
|
246 |
-
"""
|
247 |
-
if no context is given to forward function, cross-attention defaults to self-attention
|
248 |
-
"""
|
249 |
-
def __init__(self,
|
250 |
-
# Spatial
|
251 |
-
dim,
|
252 |
-
n_heads,
|
253 |
-
d_head,
|
254 |
-
dropout=0.,
|
255 |
-
context_dim=None,
|
256 |
-
gated_ff=True,
|
257 |
-
checkpoint=True,
|
258 |
-
# Temporal
|
259 |
-
temporal_length=None,
|
260 |
-
use_relative_position=True,
|
261 |
-
**kwargs,
|
262 |
-
):
|
263 |
-
super().__init__()
|
264 |
-
|
265 |
-
# spatial self attention (if context_dim is None) and spatial cross attention
|
266 |
-
if XFORMERS_IS_AVAILBLE:
|
267 |
-
self.attn1 = MemoryEfficientCrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout, **kwargs,)
|
268 |
-
self.attn2 = MemoryEfficientCrossAttention(query_dim=dim, context_dim=context_dim,
|
269 |
-
heads=n_heads, dim_head=d_head, dropout=dropout, **kwargs,)
|
270 |
-
else:
|
271 |
-
self.attn1 = CrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout, **kwargs,)
|
272 |
-
self.attn2 = CrossAttention(query_dim=dim, context_dim=context_dim,
|
273 |
-
heads=n_heads, dim_head=d_head, dropout=dropout, **kwargs,)
|
274 |
-
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
|
275 |
-
|
276 |
-
self.norm1 = nn.LayerNorm(dim)
|
277 |
-
self.norm2 = nn.LayerNorm(dim)
|
278 |
-
self.norm3 = nn.LayerNorm(dim)
|
279 |
-
self.checkpoint = checkpoint
|
280 |
-
|
281 |
-
# Temporal attention
|
282 |
-
self.attn1_tmp = TemporalCrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout,
|
283 |
-
temporal_length=temporal_length,
|
284 |
-
use_relative_position=use_relative_position,
|
285 |
-
**kwargs,
|
286 |
-
)
|
287 |
-
self.attn2_tmp = TemporalCrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout,
|
288 |
-
# cross attn
|
289 |
-
context_dim=None,
|
290 |
-
# temporal attn
|
291 |
-
temporal_length=temporal_length,
|
292 |
-
use_relative_position=use_relative_position,
|
293 |
-
**kwargs,
|
294 |
-
)
|
295 |
-
self.norm4 = nn.LayerNorm(dim)
|
296 |
-
self.norm5 = nn.LayerNorm(dim)
|
297 |
-
|
298 |
-
def forward(self, x, context=None, **kwargs):
|
299 |
-
return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint)
|
300 |
-
|
301 |
-
def _forward(self, x, context=None, mask=None,):
|
302 |
-
assert(x.dim() == 5), f"x shape = {x.shape}"
|
303 |
-
b, c, t, h, w = x.shape
|
304 |
-
|
305 |
-
# spatial self attention
|
306 |
-
x = rearrange(x, 'b c t h w -> (b t) (h w) c')
|
307 |
-
x = self.attn1(self.norm1(x)) + x
|
308 |
-
x = rearrange(x, '(b t) (h w) c -> b c t h w', b=b,h=h)
|
309 |
-
|
310 |
-
# temporal self attention
|
311 |
-
x = rearrange(x, 'b c t h w -> (b h w) t c')
|
312 |
-
x = self.attn1_tmp(self.norm4(x), mask=mask) + x
|
313 |
-
x = rearrange(x, '(b h w) t c -> b c t h w', b=b,h=h,w=w) # 3d -> 5d
|
314 |
-
|
315 |
-
# spatial cross attention
|
316 |
-
x = rearrange(x, 'b c t h w -> (b t) (h w) c')
|
317 |
-
if context is not None:
|
318 |
-
context_ = []
|
319 |
-
for i in range(context.shape[0]):
|
320 |
-
context_.append(context[i].unsqueeze(0).repeat(t, 1, 1))
|
321 |
-
context_ = torch.cat(context_,dim=0)
|
322 |
-
else:
|
323 |
-
context_ = None
|
324 |
-
x = self.attn2(self.norm2(x), context=context_) + x
|
325 |
-
x = rearrange(x, '(b t) (h w) c -> b c t h w', b=b,h=h)
|
326 |
-
|
327 |
-
# temporal cross attention
|
328 |
-
x = rearrange(x, 'b c t h w -> (b h w) t c')
|
329 |
-
x = self.attn2_tmp(self.norm5(x), context=None, mask=mask) + x
|
330 |
-
|
331 |
-
# feedforward
|
332 |
-
x = self.ff(self.norm3(x)) + x
|
333 |
-
x = rearrange(x, '(b h w) t c -> b c t h w', b=b,h=h,w=w) # 3d -> 5d
|
334 |
-
|
335 |
-
return x
|
336 |
-
|
337 |
-
|
338 |
-
# ---------------------------------------------------------------------------------------------------
|
339 |
-
class SpatialTemporalTransformer(nn.Module):
|
340 |
-
"""
|
341 |
-
Transformer block for video-like data (5D tensor).
|
342 |
-
First, project the input (aka embedding) with NO reshape.
|
343 |
-
Then apply standard transformer action.
|
344 |
-
The 5D -> 3D reshape operation will be done in the specific attention module.
|
345 |
-
"""
|
346 |
-
def __init__(
|
347 |
-
self,
|
348 |
-
in_channels, n_heads, d_head,
|
349 |
-
depth=1, dropout=0.,
|
350 |
-
context_dim=None,
|
351 |
-
# Temporal
|
352 |
-
temporal_length=None,
|
353 |
-
use_relative_position=True,
|
354 |
-
**kwargs,
|
355 |
-
):
|
356 |
-
super().__init__()
|
357 |
-
|
358 |
-
self.in_channels = in_channels
|
359 |
-
inner_dim = n_heads * d_head
|
360 |
-
|
361 |
-
self.norm = Normalize(in_channels)
|
362 |
-
self.proj_in = nn.Conv3d(in_channels,
|
363 |
-
inner_dim,
|
364 |
-
kernel_size=1,
|
365 |
-
stride=1,
|
366 |
-
padding=0)
|
367 |
-
|
368 |
-
self.transformer_blocks = nn.ModuleList(
|
369 |
-
[BasicTransformerBlockST(
|
370 |
-
inner_dim, n_heads, d_head, dropout=dropout,
|
371 |
-
# cross attn
|
372 |
-
context_dim=context_dim,
|
373 |
-
# temporal attn
|
374 |
-
temporal_length=temporal_length,
|
375 |
-
use_relative_position=use_relative_position,
|
376 |
-
**kwargs
|
377 |
-
) for d in range(depth)]
|
378 |
-
)
|
379 |
-
|
380 |
-
self.proj_out = zero_module(nn.Conv3d(inner_dim,
|
381 |
-
in_channels,
|
382 |
-
kernel_size=1,
|
383 |
-
stride=1,
|
384 |
-
padding=0))
|
385 |
-
|
386 |
-
def forward(self, x, context=None, **kwargs):
|
387 |
-
|
388 |
-
assert(x.dim() == 5), f"x shape = {x.shape}"
|
389 |
-
x_in = x
|
390 |
-
|
391 |
-
x = self.norm(x)
|
392 |
-
x = self.proj_in(x)
|
393 |
-
|
394 |
-
for block in self.transformer_blocks:
|
395 |
-
x = block(x, context=context, **kwargs)
|
396 |
-
|
397 |
-
x = self.proj_out(x)
|
398 |
-
|
399 |
-
return x + x_in
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lvdm/models/modules/condition_modules.py
DELETED
@@ -1,40 +0,0 @@
|
|
1 |
-
import torch.nn as nn
|
2 |
-
from transformers import logging
|
3 |
-
from transformers import CLIPTokenizer, CLIPTextModel
|
4 |
-
logging.set_verbosity_error()
|
5 |
-
|
6 |
-
|
7 |
-
class AbstractEncoder(nn.Module):
|
8 |
-
def __init__(self):
|
9 |
-
super().__init__()
|
10 |
-
|
11 |
-
def encode(self, *args, **kwargs):
|
12 |
-
raise NotImplementedError
|
13 |
-
|
14 |
-
|
15 |
-
class FrozenCLIPEmbedder(AbstractEncoder):
|
16 |
-
"""Uses the CLIP transformer encoder for text (from huggingface)"""
|
17 |
-
def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77):
|
18 |
-
super().__init__()
|
19 |
-
self.tokenizer = CLIPTokenizer.from_pretrained(version)
|
20 |
-
self.transformer = CLIPTextModel.from_pretrained(version)
|
21 |
-
self.device = device
|
22 |
-
self.max_length = max_length
|
23 |
-
self.freeze()
|
24 |
-
|
25 |
-
def freeze(self):
|
26 |
-
self.transformer = self.transformer.eval()
|
27 |
-
for param in self.parameters():
|
28 |
-
param.requires_grad = False
|
29 |
-
|
30 |
-
def forward(self, text):
|
31 |
-
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
|
32 |
-
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
33 |
-
tokens = batch_encoding["input_ids"].to(self.device)
|
34 |
-
outputs = self.transformer(input_ids=tokens)
|
35 |
-
|
36 |
-
z = outputs.last_hidden_state
|
37 |
-
return z
|
38 |
-
|
39 |
-
def encode(self, text):
|
40 |
-
return self(text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lvdm/models/modules/lora.py
DELETED
@@ -1,1251 +0,0 @@
|
|
1 |
-
import json
|
2 |
-
from itertools import groupby
|
3 |
-
from typing import Dict, List, Optional, Set, Tuple, Type, Union
|
4 |
-
|
5 |
-
|
6 |
-
import torch
|
7 |
-
import torch.nn as nn
|
8 |
-
import torch.nn.functional as F
|
9 |
-
|
10 |
-
# try:
|
11 |
-
# from safetensors.torch import safe_open
|
12 |
-
# from safetensors.torch import save_file as safe_save
|
13 |
-
|
14 |
-
# safetensors_available = True
|
15 |
-
# except ImportError:
|
16 |
-
# from .safe_open import safe_open
|
17 |
-
|
18 |
-
# def safe_save(
|
19 |
-
# tensors: Dict[str, torch.Tensor],
|
20 |
-
# filename: str,
|
21 |
-
# metadata: Optional[Dict[str, str]] = None,
|
22 |
-
# ) -> None:
|
23 |
-
# raise EnvironmentError(
|
24 |
-
# "Saving safetensors requires the safetensors library. Please install with pip or similar."
|
25 |
-
# )
|
26 |
-
|
27 |
-
# safetensors_available = False
|
28 |
-
|
29 |
-
|
30 |
-
class LoraInjectedLinear(nn.Module):
|
31 |
-
def __init__(
|
32 |
-
self, in_features, out_features, bias=False, r=4, dropout_p=0.1, scale=1.0
|
33 |
-
):
|
34 |
-
super().__init__()
|
35 |
-
|
36 |
-
if r > min(in_features, out_features):
|
37 |
-
raise ValueError(
|
38 |
-
f"LoRA rank {r} must be less or equal than {min(in_features, out_features)}"
|
39 |
-
)
|
40 |
-
self.r = r
|
41 |
-
self.linear = nn.Linear(in_features, out_features, bias)
|
42 |
-
self.lora_down = nn.Linear(in_features, r, bias=False)
|
43 |
-
self.dropout = nn.Dropout(dropout_p)
|
44 |
-
self.lora_up = nn.Linear(r, out_features, bias=False)
|
45 |
-
self.scale = scale
|
46 |
-
self.selector = nn.Identity()
|
47 |
-
|
48 |
-
nn.init.normal_(self.lora_down.weight, std=1 / r)
|
49 |
-
nn.init.zeros_(self.lora_up.weight)
|
50 |
-
|
51 |
-
def forward(self, input):
|
52 |
-
return (
|
53 |
-
self.linear(input)
|
54 |
-
+ self.dropout(self.lora_up(self.selector(self.lora_down(input))))
|
55 |
-
* self.scale
|
56 |
-
)
|
57 |
-
|
58 |
-
def realize_as_lora(self):
|
59 |
-
return self.lora_up.weight.data * self.scale, self.lora_down.weight.data
|
60 |
-
|
61 |
-
def set_selector_from_diag(self, diag: torch.Tensor):
|
62 |
-
# diag is a 1D tensor of size (r,)
|
63 |
-
assert diag.shape == (self.r,)
|
64 |
-
self.selector = nn.Linear(self.r, self.r, bias=False)
|
65 |
-
self.selector.weight.data = torch.diag(diag)
|
66 |
-
self.selector.weight.data = self.selector.weight.data.to(
|
67 |
-
self.lora_up.weight.device
|
68 |
-
).to(self.lora_up.weight.dtype)
|
69 |
-
|
70 |
-
|
71 |
-
class LoraInjectedConv2d(nn.Module):
|
72 |
-
def __init__(
|
73 |
-
self,
|
74 |
-
in_channels: int,
|
75 |
-
out_channels: int,
|
76 |
-
kernel_size,
|
77 |
-
stride=1,
|
78 |
-
padding=0,
|
79 |
-
dilation=1,
|
80 |
-
groups: int = 1,
|
81 |
-
bias: bool = True,
|
82 |
-
r: int = 4,
|
83 |
-
dropout_p: float = 0.1,
|
84 |
-
scale: float = 1.0,
|
85 |
-
):
|
86 |
-
super().__init__()
|
87 |
-
if r > min(in_channels, out_channels):
|
88 |
-
raise ValueError(
|
89 |
-
f"LoRA rank {r} must be less or equal than {min(in_channels, out_channels)}"
|
90 |
-
)
|
91 |
-
self.r = r
|
92 |
-
self.conv = nn.Conv2d(
|
93 |
-
in_channels=in_channels,
|
94 |
-
out_channels=out_channels,
|
95 |
-
kernel_size=kernel_size,
|
96 |
-
stride=stride,
|
97 |
-
padding=padding,
|
98 |
-
dilation=dilation,
|
99 |
-
groups=groups,
|
100 |
-
bias=bias,
|
101 |
-
)
|
102 |
-
|
103 |
-
self.lora_down = nn.Conv2d(
|
104 |
-
in_channels=in_channels,
|
105 |
-
out_channels=r,
|
106 |
-
kernel_size=kernel_size,
|
107 |
-
stride=stride,
|
108 |
-
padding=padding,
|
109 |
-
dilation=dilation,
|
110 |
-
groups=groups,
|
111 |
-
bias=False,
|
112 |
-
)
|
113 |
-
self.dropout = nn.Dropout(dropout_p)
|
114 |
-
self.lora_up = nn.Conv2d(
|
115 |
-
in_channels=r,
|
116 |
-
out_channels=out_channels,
|
117 |
-
kernel_size=1,
|
118 |
-
stride=1,
|
119 |
-
padding=0,
|
120 |
-
bias=False,
|
121 |
-
)
|
122 |
-
self.selector = nn.Identity()
|
123 |
-
self.scale = scale
|
124 |
-
|
125 |
-
nn.init.normal_(self.lora_down.weight, std=1 / r)
|
126 |
-
nn.init.zeros_(self.lora_up.weight)
|
127 |
-
|
128 |
-
def forward(self, input):
|
129 |
-
return (
|
130 |
-
self.conv(input)
|
131 |
-
+ self.dropout(self.lora_up(self.selector(self.lora_down(input))))
|
132 |
-
* self.scale
|
133 |
-
)
|
134 |
-
|
135 |
-
def realize_as_lora(self):
|
136 |
-
return self.lora_up.weight.data * self.scale, self.lora_down.weight.data
|
137 |
-
|
138 |
-
def set_selector_from_diag(self, diag: torch.Tensor):
|
139 |
-
# diag is a 1D tensor of size (r,)
|
140 |
-
assert diag.shape == (self.r,)
|
141 |
-
self.selector = nn.Conv2d(
|
142 |
-
in_channels=self.r,
|
143 |
-
out_channels=self.r,
|
144 |
-
kernel_size=1,
|
145 |
-
stride=1,
|
146 |
-
padding=0,
|
147 |
-
bias=False,
|
148 |
-
)
|
149 |
-
self.selector.weight.data = torch.diag(diag)
|
150 |
-
|
151 |
-
# same device + dtype as lora_up
|
152 |
-
self.selector.weight.data = self.selector.weight.data.to(
|
153 |
-
self.lora_up.weight.device
|
154 |
-
).to(self.lora_up.weight.dtype)
|
155 |
-
|
156 |
-
|
157 |
-
UNET_DEFAULT_TARGET_REPLACE = {"MemoryEfficientCrossAttention","CrossAttention", "Attention", "GEGLU"}
|
158 |
-
|
159 |
-
UNET_EXTENDED_TARGET_REPLACE = {"TimestepEmbedSequential","SpatialTemporalTransformer", "MemoryEfficientCrossAttention","CrossAttention", "Attention", "GEGLU"}
|
160 |
-
|
161 |
-
TEXT_ENCODER_DEFAULT_TARGET_REPLACE = {"CLIPAttention"}
|
162 |
-
|
163 |
-
TEXT_ENCODER_EXTENDED_TARGET_REPLACE = {"CLIPMLP","CLIPAttention"}
|
164 |
-
|
165 |
-
DEFAULT_TARGET_REPLACE = UNET_DEFAULT_TARGET_REPLACE
|
166 |
-
|
167 |
-
EMBED_FLAG = "<embed>"
|
168 |
-
|
169 |
-
|
170 |
-
def _find_children(
|
171 |
-
model,
|
172 |
-
search_class: List[Type[nn.Module]] = [nn.Linear],
|
173 |
-
):
|
174 |
-
"""
|
175 |
-
Find all modules of a certain class (or union of classes).
|
176 |
-
|
177 |
-
Returns all matching modules, along with the parent of those moduless and the
|
178 |
-
names they are referenced by.
|
179 |
-
"""
|
180 |
-
# For each target find every linear_class module that isn't a child of a LoraInjectedLinear
|
181 |
-
for parent in model.modules():
|
182 |
-
for name, module in parent.named_children():
|
183 |
-
if any([isinstance(module, _class) for _class in search_class]):
|
184 |
-
yield parent, name, module
|
185 |
-
|
186 |
-
|
187 |
-
def _find_modules_v2(
|
188 |
-
model,
|
189 |
-
ancestor_class: Optional[Set[str]] = None,
|
190 |
-
search_class: List[Type[nn.Module]] = [nn.Linear],
|
191 |
-
exclude_children_of: Optional[List[Type[nn.Module]]] = [
|
192 |
-
LoraInjectedLinear,
|
193 |
-
LoraInjectedConv2d,
|
194 |
-
],
|
195 |
-
):
|
196 |
-
"""
|
197 |
-
Find all modules of a certain class (or union of classes) that are direct or
|
198 |
-
indirect descendants of other modules of a certain class (or union of classes).
|
199 |
-
|
200 |
-
Returns all matching modules, along with the parent of those moduless and the
|
201 |
-
names they are referenced by.
|
202 |
-
"""
|
203 |
-
|
204 |
-
# Get the targets we should replace all linears under
|
205 |
-
if type(ancestor_class) is not set:
|
206 |
-
ancestor_class = set(ancestor_class)
|
207 |
-
print(ancestor_class)
|
208 |
-
if ancestor_class is not None:
|
209 |
-
ancestors = (
|
210 |
-
module
|
211 |
-
for module in model.modules()
|
212 |
-
if module.__class__.__name__ in ancestor_class
|
213 |
-
)
|
214 |
-
else:
|
215 |
-
# this, incase you want to naively iterate over all modules.
|
216 |
-
ancestors = [module for module in model.modules()]
|
217 |
-
|
218 |
-
# For each target find every linear_class module that isn't a child of a LoraInjectedLinear
|
219 |
-
for ancestor in ancestors:
|
220 |
-
for fullname, module in ancestor.named_children():
|
221 |
-
if any([isinstance(module, _class) for _class in search_class]):
|
222 |
-
# Find the direct parent if this is a descendant, not a child, of target
|
223 |
-
*path, name = fullname.split(".")
|
224 |
-
parent = ancestor
|
225 |
-
while path:
|
226 |
-
parent = parent.get_submodule(path.pop(0))
|
227 |
-
# Skip this linear if it's a child of a LoraInjectedLinear
|
228 |
-
if exclude_children_of and any(
|
229 |
-
[isinstance(parent, _class) for _class in exclude_children_of]
|
230 |
-
):
|
231 |
-
continue
|
232 |
-
# Otherwise, yield it
|
233 |
-
yield parent, name, module
|
234 |
-
|
235 |
-
|
236 |
-
def _find_modules_old(
|
237 |
-
model,
|
238 |
-
ancestor_class: Set[str] = DEFAULT_TARGET_REPLACE,
|
239 |
-
search_class: List[Type[nn.Module]] = [nn.Linear],
|
240 |
-
exclude_children_of: Optional[List[Type[nn.Module]]] = [LoraInjectedLinear],
|
241 |
-
):
|
242 |
-
ret = []
|
243 |
-
for _module in model.modules():
|
244 |
-
if _module.__class__.__name__ in ancestor_class:
|
245 |
-
|
246 |
-
for name, _child_module in _module.named_children():
|
247 |
-
if _child_module.__class__ in search_class:
|
248 |
-
ret.append((_module, name, _child_module))
|
249 |
-
print(ret)
|
250 |
-
return ret
|
251 |
-
|
252 |
-
|
253 |
-
_find_modules = _find_modules_v2
|
254 |
-
|
255 |
-
|
256 |
-
def inject_trainable_lora(
|
257 |
-
model: nn.Module,
|
258 |
-
target_replace_module: Set[str] = DEFAULT_TARGET_REPLACE,
|
259 |
-
r: int = 4,
|
260 |
-
loras=None, # path to lora .pt
|
261 |
-
verbose: bool = False,
|
262 |
-
dropout_p: float = 0.0,
|
263 |
-
scale: float = 1.0,
|
264 |
-
):
|
265 |
-
"""
|
266 |
-
inject lora into model, and returns lora parameter groups.
|
267 |
-
"""
|
268 |
-
|
269 |
-
require_grad_params = []
|
270 |
-
names = []
|
271 |
-
|
272 |
-
if loras != None:
|
273 |
-
loras = torch.load(loras)
|
274 |
-
|
275 |
-
for _module, name, _child_module in _find_modules(
|
276 |
-
model, target_replace_module, search_class=[nn.Linear]
|
277 |
-
):
|
278 |
-
weight = _child_module.weight
|
279 |
-
bias = _child_module.bias
|
280 |
-
if verbose:
|
281 |
-
print("LoRA Injection : injecting lora into ", name)
|
282 |
-
print("LoRA Injection : weight shape", weight.shape)
|
283 |
-
_tmp = LoraInjectedLinear(
|
284 |
-
_child_module.in_features,
|
285 |
-
_child_module.out_features,
|
286 |
-
_child_module.bias is not None,
|
287 |
-
r=r,
|
288 |
-
dropout_p=dropout_p,
|
289 |
-
scale=scale,
|
290 |
-
)
|
291 |
-
_tmp.linear.weight = weight
|
292 |
-
if bias is not None:
|
293 |
-
_tmp.linear.bias = bias
|
294 |
-
|
295 |
-
# switch the module
|
296 |
-
_tmp.to(_child_module.weight.device).to(_child_module.weight.dtype)
|
297 |
-
_module._modules[name] = _tmp
|
298 |
-
|
299 |
-
require_grad_params.append(_module._modules[name].lora_up.parameters())
|
300 |
-
require_grad_params.append(_module._modules[name].lora_down.parameters())
|
301 |
-
|
302 |
-
if loras != None:
|
303 |
-
_module._modules[name].lora_up.weight = loras.pop(0)
|
304 |
-
_module._modules[name].lora_down.weight = loras.pop(0)
|
305 |
-
|
306 |
-
_module._modules[name].lora_up.weight.requires_grad = True
|
307 |
-
_module._modules[name].lora_down.weight.requires_grad = True
|
308 |
-
names.append(name)
|
309 |
-
|
310 |
-
return require_grad_params, names
|
311 |
-
|
312 |
-
|
313 |
-
def inject_trainable_lora_extended(
|
314 |
-
model: nn.Module,
|
315 |
-
target_replace_module: Set[str] = UNET_EXTENDED_TARGET_REPLACE,
|
316 |
-
r: int = 4,
|
317 |
-
loras=None, # path to lora .pt
|
318 |
-
):
|
319 |
-
"""
|
320 |
-
inject lora into model, and returns lora parameter groups.
|
321 |
-
"""
|
322 |
-
|
323 |
-
require_grad_params = []
|
324 |
-
names = []
|
325 |
-
|
326 |
-
if loras != None:
|
327 |
-
loras = torch.load(loras)
|
328 |
-
|
329 |
-
for _module, name, _child_module in _find_modules(
|
330 |
-
model, target_replace_module, search_class=[nn.Linear, nn.Conv2d]
|
331 |
-
):
|
332 |
-
if _child_module.__class__ == nn.Linear:
|
333 |
-
weight = _child_module.weight
|
334 |
-
bias = _child_module.bias
|
335 |
-
_tmp = LoraInjectedLinear(
|
336 |
-
_child_module.in_features,
|
337 |
-
_child_module.out_features,
|
338 |
-
_child_module.bias is not None,
|
339 |
-
r=r,
|
340 |
-
)
|
341 |
-
_tmp.linear.weight = weight
|
342 |
-
if bias is not None:
|
343 |
-
_tmp.linear.bias = bias
|
344 |
-
elif _child_module.__class__ == nn.Conv2d:
|
345 |
-
weight = _child_module.weight
|
346 |
-
bias = _child_module.bias
|
347 |
-
_tmp = LoraInjectedConv2d(
|
348 |
-
_child_module.in_channels,
|
349 |
-
_child_module.out_channels,
|
350 |
-
_child_module.kernel_size,
|
351 |
-
_child_module.stride,
|
352 |
-
_child_module.padding,
|
353 |
-
_child_module.dilation,
|
354 |
-
_child_module.groups,
|
355 |
-
_child_module.bias is not None,
|
356 |
-
r=r,
|
357 |
-
)
|
358 |
-
|
359 |
-
_tmp.conv.weight = weight
|
360 |
-
if bias is not None:
|
361 |
-
_tmp.conv.bias = bias
|
362 |
-
|
363 |
-
# switch the module
|
364 |
-
_tmp.to(_child_module.weight.device).to(_child_module.weight.dtype)
|
365 |
-
if bias is not None:
|
366 |
-
_tmp.to(_child_module.bias.device).to(_child_module.bias.dtype)
|
367 |
-
|
368 |
-
_module._modules[name] = _tmp
|
369 |
-
|
370 |
-
require_grad_params.append(_module._modules[name].lora_up.parameters())
|
371 |
-
require_grad_params.append(_module._modules[name].lora_down.parameters())
|
372 |
-
|
373 |
-
if loras != None:
|
374 |
-
_module._modules[name].lora_up.weight = loras.pop(0)
|
375 |
-
_module._modules[name].lora_down.weight = loras.pop(0)
|
376 |
-
|
377 |
-
_module._modules[name].lora_up.weight.requires_grad = True
|
378 |
-
_module._modules[name].lora_down.weight.requires_grad = True
|
379 |
-
names.append(name)
|
380 |
-
|
381 |
-
return require_grad_params, names
|
382 |
-
|
383 |
-
|
384 |
-
def extract_lora_ups_down(model, target_replace_module=DEFAULT_TARGET_REPLACE):
|
385 |
-
|
386 |
-
loras = []
|
387 |
-
|
388 |
-
for _m, _n, _child_module in _find_modules(
|
389 |
-
model,
|
390 |
-
target_replace_module,
|
391 |
-
search_class=[LoraInjectedLinear, LoraInjectedConv2d],
|
392 |
-
):
|
393 |
-
loras.append((_child_module.lora_up, _child_module.lora_down))
|
394 |
-
|
395 |
-
if len(loras) == 0:
|
396 |
-
raise ValueError("No lora injected.")
|
397 |
-
|
398 |
-
return loras
|
399 |
-
|
400 |
-
|
401 |
-
def extract_lora_as_tensor(
|
402 |
-
model, target_replace_module=DEFAULT_TARGET_REPLACE, as_fp16=True
|
403 |
-
):
|
404 |
-
|
405 |
-
loras = []
|
406 |
-
|
407 |
-
for _m, _n, _child_module in _find_modules(
|
408 |
-
model,
|
409 |
-
target_replace_module,
|
410 |
-
search_class=[LoraInjectedLinear, LoraInjectedConv2d],
|
411 |
-
):
|
412 |
-
up, down = _child_module.realize_as_lora()
|
413 |
-
if as_fp16:
|
414 |
-
up = up.to(torch.float16)
|
415 |
-
down = down.to(torch.float16)
|
416 |
-
|
417 |
-
loras.append((up, down))
|
418 |
-
|
419 |
-
if len(loras) == 0:
|
420 |
-
raise ValueError("No lora injected.")
|
421 |
-
|
422 |
-
return loras
|
423 |
-
|
424 |
-
|
425 |
-
def save_lora_weight(
|
426 |
-
model,
|
427 |
-
path="./lora.pt",
|
428 |
-
target_replace_module=DEFAULT_TARGET_REPLACE,
|
429 |
-
):
|
430 |
-
weights = []
|
431 |
-
for _up, _down in extract_lora_ups_down(
|
432 |
-
model, target_replace_module=target_replace_module
|
433 |
-
):
|
434 |
-
weights.append(_up.weight.to("cpu").to(torch.float16))
|
435 |
-
weights.append(_down.weight.to("cpu").to(torch.float16))
|
436 |
-
|
437 |
-
torch.save(weights, path)
|
438 |
-
|
439 |
-
|
440 |
-
def save_lora_as_json(model, path="./lora.json"):
|
441 |
-
weights = []
|
442 |
-
for _up, _down in extract_lora_ups_down(model):
|
443 |
-
weights.append(_up.weight.detach().cpu().numpy().tolist())
|
444 |
-
weights.append(_down.weight.detach().cpu().numpy().tolist())
|
445 |
-
|
446 |
-
import json
|
447 |
-
|
448 |
-
with open(path, "w") as f:
|
449 |
-
json.dump(weights, f)
|
450 |
-
|
451 |
-
|
452 |
-
def save_safeloras_with_embeds(
|
453 |
-
modelmap: Dict[str, Tuple[nn.Module, Set[str]]] = {},
|
454 |
-
embeds: Dict[str, torch.Tensor] = {},
|
455 |
-
outpath="./lora.safetensors",
|
456 |
-
):
|
457 |
-
"""
|
458 |
-
Saves the Lora from multiple modules in a single safetensor file.
|
459 |
-
|
460 |
-
modelmap is a dictionary of {
|
461 |
-
"module name": (module, target_replace_module)
|
462 |
-
}
|
463 |
-
"""
|
464 |
-
weights = {}
|
465 |
-
metadata = {}
|
466 |
-
|
467 |
-
for name, (model, target_replace_module) in modelmap.items():
|
468 |
-
metadata[name] = json.dumps(list(target_replace_module))
|
469 |
-
|
470 |
-
for i, (_up, _down) in enumerate(
|
471 |
-
extract_lora_as_tensor(model, target_replace_module)
|
472 |
-
):
|
473 |
-
rank = _down.shape[0]
|
474 |
-
|
475 |
-
metadata[f"{name}:{i}:rank"] = str(rank)
|
476 |
-
weights[f"{name}:{i}:up"] = _up
|
477 |
-
weights[f"{name}:{i}:down"] = _down
|
478 |
-
|
479 |
-
for token, tensor in embeds.items():
|
480 |
-
metadata[token] = EMBED_FLAG
|
481 |
-
weights[token] = tensor
|
482 |
-
|
483 |
-
print(f"Saving weights to {outpath}")
|
484 |
-
safe_save(weights, outpath, metadata)
|
485 |
-
|
486 |
-
|
487 |
-
def save_safeloras(
|
488 |
-
modelmap: Dict[str, Tuple[nn.Module, Set[str]]] = {},
|
489 |
-
outpath="./lora.safetensors",
|
490 |
-
):
|
491 |
-
return save_safeloras_with_embeds(modelmap=modelmap, outpath=outpath)
|
492 |
-
|
493 |
-
|
494 |
-
def convert_loras_to_safeloras_with_embeds(
|
495 |
-
modelmap: Dict[str, Tuple[str, Set[str], int]] = {},
|
496 |
-
embeds: Dict[str, torch.Tensor] = {},
|
497 |
-
outpath="./lora.safetensors",
|
498 |
-
):
|
499 |
-
"""
|
500 |
-
Converts the Lora from multiple pytorch .pt files into a single safetensor file.
|
501 |
-
|
502 |
-
modelmap is a dictionary of {
|
503 |
-
"module name": (pytorch_model_path, target_replace_module, rank)
|
504 |
-
}
|
505 |
-
"""
|
506 |
-
|
507 |
-
weights = {}
|
508 |
-
metadata = {}
|
509 |
-
|
510 |
-
for name, (path, target_replace_module, r) in modelmap.items():
|
511 |
-
metadata[name] = json.dumps(list(target_replace_module))
|
512 |
-
|
513 |
-
lora = torch.load(path)
|
514 |
-
for i, weight in enumerate(lora):
|
515 |
-
is_up = i % 2 == 0
|
516 |
-
i = i // 2
|
517 |
-
|
518 |
-
if is_up:
|
519 |
-
metadata[f"{name}:{i}:rank"] = str(r)
|
520 |
-
weights[f"{name}:{i}:up"] = weight
|
521 |
-
else:
|
522 |
-
weights[f"{name}:{i}:down"] = weight
|
523 |
-
|
524 |
-
for token, tensor in embeds.items():
|
525 |
-
metadata[token] = EMBED_FLAG
|
526 |
-
weights[token] = tensor
|
527 |
-
|
528 |
-
print(f"Saving weights to {outpath}")
|
529 |
-
safe_save(weights, outpath, metadata)
|
530 |
-
|
531 |
-
|
532 |
-
def convert_loras_to_safeloras(
|
533 |
-
modelmap: Dict[str, Tuple[str, Set[str], int]] = {},
|
534 |
-
outpath="./lora.safetensors",
|
535 |
-
):
|
536 |
-
convert_loras_to_safeloras_with_embeds(modelmap=modelmap, outpath=outpath)
|
537 |
-
|
538 |
-
|
539 |
-
def parse_safeloras(
|
540 |
-
safeloras,
|
541 |
-
) -> Dict[str, Tuple[List[nn.parameter.Parameter], List[int], List[str]]]:
|
542 |
-
"""
|
543 |
-
Converts a loaded safetensor file that contains a set of module Loras
|
544 |
-
into Parameters and other information
|
545 |
-
|
546 |
-
Output is a dictionary of {
|
547 |
-
"module name": (
|
548 |
-
[list of weights],
|
549 |
-
[list of ranks],
|
550 |
-
target_replacement_modules
|
551 |
-
)
|
552 |
-
}
|
553 |
-
"""
|
554 |
-
loras = {}
|
555 |
-
metadata = safeloras.metadata()
|
556 |
-
|
557 |
-
get_name = lambda k: k.split(":")[0]
|
558 |
-
|
559 |
-
keys = list(safeloras.keys())
|
560 |
-
keys.sort(key=get_name)
|
561 |
-
|
562 |
-
for name, module_keys in groupby(keys, get_name):
|
563 |
-
info = metadata.get(name)
|
564 |
-
|
565 |
-
if not info:
|
566 |
-
raise ValueError(
|
567 |
-
f"Tensor {name} has no metadata - is this a Lora safetensor?"
|
568 |
-
)
|
569 |
-
|
570 |
-
# Skip Textual Inversion embeds
|
571 |
-
if info == EMBED_FLAG:
|
572 |
-
continue
|
573 |
-
|
574 |
-
# Handle Loras
|
575 |
-
# Extract the targets
|
576 |
-
target = json.loads(info)
|
577 |
-
|
578 |
-
# Build the result lists - Python needs us to preallocate lists to insert into them
|
579 |
-
module_keys = list(module_keys)
|
580 |
-
ranks = [4] * (len(module_keys) // 2)
|
581 |
-
weights = [None] * len(module_keys)
|
582 |
-
|
583 |
-
for key in module_keys:
|
584 |
-
# Split the model name and index out of the key
|
585 |
-
_, idx, direction = key.split(":")
|
586 |
-
idx = int(idx)
|
587 |
-
|
588 |
-
# Add the rank
|
589 |
-
ranks[idx] = int(metadata[f"{name}:{idx}:rank"])
|
590 |
-
|
591 |
-
# Insert the weight into the list
|
592 |
-
idx = idx * 2 + (1 if direction == "down" else 0)
|
593 |
-
weights[idx] = nn.parameter.Parameter(safeloras.get_tensor(key))
|
594 |
-
|
595 |
-
loras[name] = (weights, ranks, target)
|
596 |
-
|
597 |
-
return loras
|
598 |
-
|
599 |
-
|
600 |
-
def parse_safeloras_embeds(
|
601 |
-
safeloras,
|
602 |
-
) -> Dict[str, torch.Tensor]:
|
603 |
-
"""
|
604 |
-
Converts a loaded safetensor file that contains Textual Inversion embeds into
|
605 |
-
a dictionary of embed_token: Tensor
|
606 |
-
"""
|
607 |
-
embeds = {}
|
608 |
-
metadata = safeloras.metadata()
|
609 |
-
|
610 |
-
for key in safeloras.keys():
|
611 |
-
# Only handle Textual Inversion embeds
|
612 |
-
meta = metadata.get(key)
|
613 |
-
if not meta or meta != EMBED_FLAG:
|
614 |
-
continue
|
615 |
-
|
616 |
-
embeds[key] = safeloras.get_tensor(key)
|
617 |
-
|
618 |
-
return embeds
|
619 |
-
|
620 |
-
def net_load_lora(net, checkpoint_path, alpha=1.0, remove=False):
|
621 |
-
visited=[]
|
622 |
-
state_dict = torch.load(checkpoint_path)
|
623 |
-
for k, v in state_dict.items():
|
624 |
-
state_dict[k] = v.to(net.device)
|
625 |
-
|
626 |
-
for key in state_dict:
|
627 |
-
if ".alpha" in key or key in visited:
|
628 |
-
continue
|
629 |
-
layer_infos = key.split(".")[:-2] # remove lora_up and down weight
|
630 |
-
curr_layer = net
|
631 |
-
# find the target layer
|
632 |
-
temp_name = layer_infos.pop(0)
|
633 |
-
while len(layer_infos) > -1:
|
634 |
-
curr_layer = curr_layer.__getattr__(temp_name)
|
635 |
-
if len(layer_infos) > 0:
|
636 |
-
temp_name = layer_infos.pop(0)
|
637 |
-
elif len(layer_infos) == 0:
|
638 |
-
break
|
639 |
-
if curr_layer.__class__ not in [nn.Linear, nn.Conv2d]:
|
640 |
-
print('missing param at:', key)
|
641 |
-
continue
|
642 |
-
pair_keys = []
|
643 |
-
if "lora_down" in key:
|
644 |
-
pair_keys.append(key.replace("lora_down", "lora_up"))
|
645 |
-
pair_keys.append(key)
|
646 |
-
else:
|
647 |
-
pair_keys.append(key)
|
648 |
-
pair_keys.append(key.replace("lora_up", "lora_down"))
|
649 |
-
|
650 |
-
# update weight
|
651 |
-
if len(state_dict[pair_keys[0]].shape) == 4:
|
652 |
-
# for conv
|
653 |
-
weight_up = state_dict[pair_keys[0]].squeeze(3).squeeze(2).to(torch.float32)
|
654 |
-
weight_down = state_dict[pair_keys[1]].squeeze(3).squeeze(2).to(torch.float32)
|
655 |
-
if remove:
|
656 |
-
curr_layer.weight.data -= alpha * torch.mm(weight_up, weight_down).unsqueeze(2).unsqueeze(3)
|
657 |
-
else:
|
658 |
-
curr_layer.weight.data += alpha * torch.mm(weight_up, weight_down).unsqueeze(2).unsqueeze(3)
|
659 |
-
else:
|
660 |
-
# for linear
|
661 |
-
weight_up = state_dict[pair_keys[0]].to(torch.float32)
|
662 |
-
weight_down = state_dict[pair_keys[1]].to(torch.float32)
|
663 |
-
if remove:
|
664 |
-
curr_layer.weight.data -= alpha * torch.mm(weight_up, weight_down)
|
665 |
-
else:
|
666 |
-
curr_layer.weight.data += alpha * torch.mm(weight_up, weight_down)
|
667 |
-
|
668 |
-
# update visited list
|
669 |
-
for item in pair_keys:
|
670 |
-
visited.append(item)
|
671 |
-
print('load_weight_num:',len(visited))
|
672 |
-
return
|
673 |
-
|
674 |
-
def change_lora(model, inject_lora=False, lora_scale=1.0, lora_path='', last_time_lora='', last_time_lora_scale=1.0):
|
675 |
-
# remove lora
|
676 |
-
if last_time_lora != '':
|
677 |
-
net_load_lora(model, last_time_lora, alpha=last_time_lora_scale, remove=True)
|
678 |
-
# add new lora
|
679 |
-
if inject_lora:
|
680 |
-
net_load_lora(model, lora_path, alpha=lora_scale)
|
681 |
-
|
682 |
-
|
683 |
-
def net_load_lora_v2(net, checkpoint_path, alpha=1.0, remove=False, origin_weight=None):
|
684 |
-
visited=[]
|
685 |
-
state_dict = torch.load(checkpoint_path)
|
686 |
-
for k, v in state_dict.items():
|
687 |
-
state_dict[k] = v.to(net.device)
|
688 |
-
|
689 |
-
for key in state_dict:
|
690 |
-
if ".alpha" in key or key in visited:
|
691 |
-
continue
|
692 |
-
layer_infos = key.split(".")[:-2] # remove lora_up and down weight
|
693 |
-
curr_layer = net
|
694 |
-
# find the target layer
|
695 |
-
temp_name = layer_infos.pop(0)
|
696 |
-
while len(layer_infos) > -1:
|
697 |
-
curr_layer = curr_layer.__getattr__(temp_name)
|
698 |
-
if len(layer_infos) > 0:
|
699 |
-
temp_name = layer_infos.pop(0)
|
700 |
-
elif len(layer_infos) == 0:
|
701 |
-
break
|
702 |
-
if curr_layer.__class__ not in [nn.Linear, nn.Conv2d]:
|
703 |
-
print('missing param at:', key)
|
704 |
-
continue
|
705 |
-
pair_keys = []
|
706 |
-
if "lora_down" in key:
|
707 |
-
pair_keys.append(key.replace("lora_down", "lora_up"))
|
708 |
-
pair_keys.append(key)
|
709 |
-
else:
|
710 |
-
pair_keys.append(key)
|
711 |
-
pair_keys.append(key.replace("lora_up", "lora_down"))
|
712 |
-
|
713 |
-
# storage weight
|
714 |
-
if origin_weight is None:
|
715 |
-
origin_weight = dict()
|
716 |
-
storage_key = key.replace("lora_down", "lora").replace("lora_up", "lora")
|
717 |
-
origin_weight[storage_key] = curr_layer.weight.data.clone()
|
718 |
-
else:
|
719 |
-
storage_key = key.replace("lora_down", "lora").replace("lora_up", "lora")
|
720 |
-
if storage_key not in origin_weight.keys():
|
721 |
-
origin_weight[storage_key] = curr_layer.weight.data.clone()
|
722 |
-
|
723 |
-
|
724 |
-
# update
|
725 |
-
if len(state_dict[pair_keys[0]].shape) == 4:
|
726 |
-
# for conv
|
727 |
-
if remove:
|
728 |
-
curr_layer.weight.data = origin_weight[storage_key].clone()
|
729 |
-
else:
|
730 |
-
weight_up = state_dict[pair_keys[0]].squeeze(3).squeeze(2).to(torch.float32)
|
731 |
-
weight_down = state_dict[pair_keys[1]].squeeze(3).squeeze(2).to(torch.float32)
|
732 |
-
curr_layer.weight.data += alpha * torch.mm(weight_up, weight_down).unsqueeze(2).unsqueeze(3)
|
733 |
-
else:
|
734 |
-
# for linear
|
735 |
-
if remove:
|
736 |
-
curr_layer.weight.data = origin_weight[storage_key].clone()
|
737 |
-
else:
|
738 |
-
weight_up = state_dict[pair_keys[0]].to(torch.float32)
|
739 |
-
weight_down = state_dict[pair_keys[1]].to(torch.float32)
|
740 |
-
curr_layer.weight.data += alpha * torch.mm(weight_up, weight_down)
|
741 |
-
|
742 |
-
# update visited list
|
743 |
-
for item in pair_keys:
|
744 |
-
visited.append(item)
|
745 |
-
print('load_weight_num:',len(visited))
|
746 |
-
return origin_weight
|
747 |
-
|
748 |
-
def change_lora_v2(model, inject_lora=False, lora_scale=1.0, lora_path='', last_time_lora='', last_time_lora_scale=1.0, origin_weight=None):
|
749 |
-
# remove lora
|
750 |
-
if last_time_lora != '':
|
751 |
-
origin_weight = net_load_lora_v2(model, last_time_lora, alpha=last_time_lora_scale, remove=True, origin_weight=origin_weight)
|
752 |
-
# add new lora
|
753 |
-
if inject_lora:
|
754 |
-
origin_weight = net_load_lora_v2(model, lora_path, alpha=lora_scale, origin_weight=origin_weight)
|
755 |
-
return origin_weight
|
756 |
-
|
757 |
-
|
758 |
-
|
759 |
-
|
760 |
-
|
761 |
-
def load_safeloras(path, device="cpu"):
|
762 |
-
safeloras = safe_open(path, framework="pt", device=device)
|
763 |
-
return parse_safeloras(safeloras)
|
764 |
-
|
765 |
-
|
766 |
-
def load_safeloras_embeds(path, device="cpu"):
|
767 |
-
safeloras = safe_open(path, framework="pt", device=device)
|
768 |
-
return parse_safeloras_embeds(safeloras)
|
769 |
-
|
770 |
-
|
771 |
-
def load_safeloras_both(path, device="cpu"):
|
772 |
-
safeloras = safe_open(path, framework="pt", device=device)
|
773 |
-
return parse_safeloras(safeloras), parse_safeloras_embeds(safeloras)
|
774 |
-
|
775 |
-
|
776 |
-
def collapse_lora(model, alpha=1.0):
|
777 |
-
|
778 |
-
for _module, name, _child_module in _find_modules(
|
779 |
-
model,
|
780 |
-
UNET_EXTENDED_TARGET_REPLACE | TEXT_ENCODER_EXTENDED_TARGET_REPLACE,
|
781 |
-
search_class=[LoraInjectedLinear, LoraInjectedConv2d],
|
782 |
-
):
|
783 |
-
|
784 |
-
if isinstance(_child_module, LoraInjectedLinear):
|
785 |
-
print("Collapsing Lin Lora in", name)
|
786 |
-
|
787 |
-
_child_module.linear.weight = nn.Parameter(
|
788 |
-
_child_module.linear.weight.data
|
789 |
-
+ alpha
|
790 |
-
* (
|
791 |
-
_child_module.lora_up.weight.data
|
792 |
-
@ _child_module.lora_down.weight.data
|
793 |
-
)
|
794 |
-
.type(_child_module.linear.weight.dtype)
|
795 |
-
.to(_child_module.linear.weight.device)
|
796 |
-
)
|
797 |
-
|
798 |
-
else:
|
799 |
-
print("Collapsing Conv Lora in", name)
|
800 |
-
_child_module.conv.weight = nn.Parameter(
|
801 |
-
_child_module.conv.weight.data
|
802 |
-
+ alpha
|
803 |
-
* (
|
804 |
-
_child_module.lora_up.weight.data.flatten(start_dim=1)
|
805 |
-
@ _child_module.lora_down.weight.data.flatten(start_dim=1)
|
806 |
-
)
|
807 |
-
.reshape(_child_module.conv.weight.data.shape)
|
808 |
-
.type(_child_module.conv.weight.dtype)
|
809 |
-
.to(_child_module.conv.weight.device)
|
810 |
-
)
|
811 |
-
|
812 |
-
|
813 |
-
def monkeypatch_or_replace_lora(
|
814 |
-
model,
|
815 |
-
loras,
|
816 |
-
target_replace_module=DEFAULT_TARGET_REPLACE,
|
817 |
-
r: Union[int, List[int]] = 4,
|
818 |
-
):
|
819 |
-
for _module, name, _child_module in _find_modules(
|
820 |
-
model, target_replace_module, search_class=[nn.Linear, LoraInjectedLinear]
|
821 |
-
):
|
822 |
-
_source = (
|
823 |
-
_child_module.linear
|
824 |
-
if isinstance(_child_module, LoraInjectedLinear)
|
825 |
-
else _child_module
|
826 |
-
)
|
827 |
-
|
828 |
-
weight = _source.weight
|
829 |
-
bias = _source.bias
|
830 |
-
_tmp = LoraInjectedLinear(
|
831 |
-
_source.in_features,
|
832 |
-
_source.out_features,
|
833 |
-
_source.bias is not None,
|
834 |
-
r=r.pop(0) if isinstance(r, list) else r,
|
835 |
-
)
|
836 |
-
_tmp.linear.weight = weight
|
837 |
-
|
838 |
-
if bias is not None:
|
839 |
-
_tmp.linear.bias = bias
|
840 |
-
|
841 |
-
# switch the module
|
842 |
-
_module._modules[name] = _tmp
|
843 |
-
|
844 |
-
up_weight = loras.pop(0)
|
845 |
-
down_weight = loras.pop(0)
|
846 |
-
|
847 |
-
_module._modules[name].lora_up.weight = nn.Parameter(
|
848 |
-
up_weight.type(weight.dtype)
|
849 |
-
)
|
850 |
-
_module._modules[name].lora_down.weight = nn.Parameter(
|
851 |
-
down_weight.type(weight.dtype)
|
852 |
-
)
|
853 |
-
|
854 |
-
_module._modules[name].to(weight.device)
|
855 |
-
|
856 |
-
|
857 |
-
def monkeypatch_or_replace_lora_extended(
|
858 |
-
model,
|
859 |
-
loras,
|
860 |
-
target_replace_module=DEFAULT_TARGET_REPLACE,
|
861 |
-
r: Union[int, List[int]] = 4,
|
862 |
-
):
|
863 |
-
for _module, name, _child_module in _find_modules(
|
864 |
-
model,
|
865 |
-
target_replace_module,
|
866 |
-
search_class=[nn.Linear, LoraInjectedLinear, nn.Conv2d, LoraInjectedConv2d],
|
867 |
-
):
|
868 |
-
|
869 |
-
if (_child_module.__class__ == nn.Linear) or (
|
870 |
-
_child_module.__class__ == LoraInjectedLinear
|
871 |
-
):
|
872 |
-
if len(loras[0].shape) != 2:
|
873 |
-
continue
|
874 |
-
|
875 |
-
_source = (
|
876 |
-
_child_module.linear
|
877 |
-
if isinstance(_child_module, LoraInjectedLinear)
|
878 |
-
else _child_module
|
879 |
-
)
|
880 |
-
|
881 |
-
weight = _source.weight
|
882 |
-
bias = _source.bias
|
883 |
-
_tmp = LoraInjectedLinear(
|
884 |
-
_source.in_features,
|
885 |
-
_source.out_features,
|
886 |
-
_source.bias is not None,
|
887 |
-
r=r.pop(0) if isinstance(r, list) else r,
|
888 |
-
)
|
889 |
-
_tmp.linear.weight = weight
|
890 |
-
|
891 |
-
if bias is not None:
|
892 |
-
_tmp.linear.bias = bias
|
893 |
-
|
894 |
-
elif (_child_module.__class__ == nn.Conv2d) or (
|
895 |
-
_child_module.__class__ == LoraInjectedConv2d
|
896 |
-
):
|
897 |
-
if len(loras[0].shape) != 4:
|
898 |
-
continue
|
899 |
-
_source = (
|
900 |
-
_child_module.conv
|
901 |
-
if isinstance(_child_module, LoraInjectedConv2d)
|
902 |
-
else _child_module
|
903 |
-
)
|
904 |
-
|
905 |
-
weight = _source.weight
|
906 |
-
bias = _source.bias
|
907 |
-
_tmp = LoraInjectedConv2d(
|
908 |
-
_source.in_channels,
|
909 |
-
_source.out_channels,
|
910 |
-
_source.kernel_size,
|
911 |
-
_source.stride,
|
912 |
-
_source.padding,
|
913 |
-
_source.dilation,
|
914 |
-
_source.groups,
|
915 |
-
_source.bias is not None,
|
916 |
-
r=r.pop(0) if isinstance(r, list) else r,
|
917 |
-
)
|
918 |
-
|
919 |
-
_tmp.conv.weight = weight
|
920 |
-
|
921 |
-
if bias is not None:
|
922 |
-
_tmp.conv.bias = bias
|
923 |
-
|
924 |
-
# switch the module
|
925 |
-
_module._modules[name] = _tmp
|
926 |
-
|
927 |
-
up_weight = loras.pop(0)
|
928 |
-
down_weight = loras.pop(0)
|
929 |
-
|
930 |
-
_module._modules[name].lora_up.weight = nn.Parameter(
|
931 |
-
up_weight.type(weight.dtype)
|
932 |
-
)
|
933 |
-
_module._modules[name].lora_down.weight = nn.Parameter(
|
934 |
-
down_weight.type(weight.dtype)
|
935 |
-
)
|
936 |
-
|
937 |
-
_module._modules[name].to(weight.device)
|
938 |
-
|
939 |
-
|
940 |
-
def monkeypatch_or_replace_safeloras(models, safeloras):
|
941 |
-
loras = parse_safeloras(safeloras)
|
942 |
-
|
943 |
-
for name, (lora, ranks, target) in loras.items():
|
944 |
-
model = getattr(models, name, None)
|
945 |
-
|
946 |
-
if not model:
|
947 |
-
print(f"No model provided for {name}, contained in Lora")
|
948 |
-
continue
|
949 |
-
|
950 |
-
monkeypatch_or_replace_lora_extended(model, lora, target, ranks)
|
951 |
-
|
952 |
-
|
953 |
-
def monkeypatch_remove_lora(model):
|
954 |
-
for _module, name, _child_module in _find_modules(
|
955 |
-
model, search_class=[LoraInjectedLinear, LoraInjectedConv2d]
|
956 |
-
):
|
957 |
-
if isinstance(_child_module, LoraInjectedLinear):
|
958 |
-
_source = _child_module.linear
|
959 |
-
weight, bias = _source.weight, _source.bias
|
960 |
-
|
961 |
-
_tmp = nn.Linear(
|
962 |
-
_source.in_features, _source.out_features, bias is not None
|
963 |
-
)
|
964 |
-
|
965 |
-
_tmp.weight = weight
|
966 |
-
if bias is not None:
|
967 |
-
_tmp.bias = bias
|
968 |
-
|
969 |
-
else:
|
970 |
-
_source = _child_module.conv
|
971 |
-
weight, bias = _source.weight, _source.bias
|
972 |
-
|
973 |
-
_tmp = nn.Conv2d(
|
974 |
-
in_channels=_source.in_channels,
|
975 |
-
out_channels=_source.out_channels,
|
976 |
-
kernel_size=_source.kernel_size,
|
977 |
-
stride=_source.stride,
|
978 |
-
padding=_source.padding,
|
979 |
-
dilation=_source.dilation,
|
980 |
-
groups=_source.groups,
|
981 |
-
bias=bias is not None,
|
982 |
-
)
|
983 |
-
|
984 |
-
_tmp.weight = weight
|
985 |
-
if bias is not None:
|
986 |
-
_tmp.bias = bias
|
987 |
-
|
988 |
-
_module._modules[name] = _tmp
|
989 |
-
|
990 |
-
|
991 |
-
def monkeypatch_add_lora(
|
992 |
-
model,
|
993 |
-
loras,
|
994 |
-
target_replace_module=DEFAULT_TARGET_REPLACE,
|
995 |
-
alpha: float = 1.0,
|
996 |
-
beta: float = 1.0,
|
997 |
-
):
|
998 |
-
for _module, name, _child_module in _find_modules(
|
999 |
-
model, target_replace_module, search_class=[LoraInjectedLinear]
|
1000 |
-
):
|
1001 |
-
weight = _child_module.linear.weight
|
1002 |
-
|
1003 |
-
up_weight = loras.pop(0)
|
1004 |
-
down_weight = loras.pop(0)
|
1005 |
-
|
1006 |
-
_module._modules[name].lora_up.weight = nn.Parameter(
|
1007 |
-
up_weight.type(weight.dtype).to(weight.device) * alpha
|
1008 |
-
+ _module._modules[name].lora_up.weight.to(weight.device) * beta
|
1009 |
-
)
|
1010 |
-
_module._modules[name].lora_down.weight = nn.Parameter(
|
1011 |
-
down_weight.type(weight.dtype).to(weight.device) * alpha
|
1012 |
-
+ _module._modules[name].lora_down.weight.to(weight.device) * beta
|
1013 |
-
)
|
1014 |
-
|
1015 |
-
_module._modules[name].to(weight.device)
|
1016 |
-
|
1017 |
-
|
1018 |
-
def tune_lora_scale(model, alpha: float = 1.0):
|
1019 |
-
for _module in model.modules():
|
1020 |
-
if _module.__class__.__name__ in ["LoraInjectedLinear", "LoraInjectedConv2d"]:
|
1021 |
-
_module.scale = alpha
|
1022 |
-
|
1023 |
-
|
1024 |
-
def set_lora_diag(model, diag: torch.Tensor):
|
1025 |
-
for _module in model.modules():
|
1026 |
-
if _module.__class__.__name__ in ["LoraInjectedLinear", "LoraInjectedConv2d"]:
|
1027 |
-
_module.set_selector_from_diag(diag)
|
1028 |
-
|
1029 |
-
|
1030 |
-
def _text_lora_path(path: str) -> str:
|
1031 |
-
assert path.endswith(".pt"), "Only .pt files are supported"
|
1032 |
-
return ".".join(path.split(".")[:-1] + ["text_encoder", "pt"])
|
1033 |
-
|
1034 |
-
|
1035 |
-
def _ti_lora_path(path: str) -> str:
|
1036 |
-
assert path.endswith(".pt"), "Only .pt files are supported"
|
1037 |
-
return ".".join(path.split(".")[:-1] + ["ti", "pt"])
|
1038 |
-
|
1039 |
-
|
1040 |
-
def apply_learned_embed_in_clip(
|
1041 |
-
learned_embeds,
|
1042 |
-
text_encoder,
|
1043 |
-
tokenizer,
|
1044 |
-
token: Optional[Union[str, List[str]]] = None,
|
1045 |
-
idempotent=False,
|
1046 |
-
):
|
1047 |
-
if isinstance(token, str):
|
1048 |
-
trained_tokens = [token]
|
1049 |
-
elif isinstance(token, list):
|
1050 |
-
assert len(learned_embeds.keys()) == len(
|
1051 |
-
token
|
1052 |
-
), "The number of tokens and the number of embeds should be the same"
|
1053 |
-
trained_tokens = token
|
1054 |
-
else:
|
1055 |
-
trained_tokens = list(learned_embeds.keys())
|
1056 |
-
|
1057 |
-
for token in trained_tokens:
|
1058 |
-
print(token)
|
1059 |
-
embeds = learned_embeds[token]
|
1060 |
-
|
1061 |
-
# cast to dtype of text_encoder
|
1062 |
-
dtype = text_encoder.get_input_embeddings().weight.dtype
|
1063 |
-
num_added_tokens = tokenizer.add_tokens(token)
|
1064 |
-
|
1065 |
-
i = 1
|
1066 |
-
if not idempotent:
|
1067 |
-
while num_added_tokens == 0:
|
1068 |
-
print(f"The tokenizer already contains the token {token}.")
|
1069 |
-
token = f"{token[:-1]}-{i}>"
|
1070 |
-
print(f"Attempting to add the token {token}.")
|
1071 |
-
num_added_tokens = tokenizer.add_tokens(token)
|
1072 |
-
i += 1
|
1073 |
-
elif num_added_tokens == 0 and idempotent:
|
1074 |
-
print(f"The tokenizer already contains the token {token}.")
|
1075 |
-
print(f"Replacing {token} embedding.")
|
1076 |
-
|
1077 |
-
# resize the token embeddings
|
1078 |
-
text_encoder.resize_token_embeddings(len(tokenizer))
|
1079 |
-
|
1080 |
-
# get the id for the token and assign the embeds
|
1081 |
-
token_id = tokenizer.convert_tokens_to_ids(token)
|
1082 |
-
text_encoder.get_input_embeddings().weight.data[token_id] = embeds
|
1083 |
-
return token
|
1084 |
-
|
1085 |
-
|
1086 |
-
def load_learned_embed_in_clip(
|
1087 |
-
learned_embeds_path,
|
1088 |
-
text_encoder,
|
1089 |
-
tokenizer,
|
1090 |
-
token: Optional[Union[str, List[str]]] = None,
|
1091 |
-
idempotent=False,
|
1092 |
-
):
|
1093 |
-
learned_embeds = torch.load(learned_embeds_path)
|
1094 |
-
apply_learned_embed_in_clip(
|
1095 |
-
learned_embeds, text_encoder, tokenizer, token, idempotent
|
1096 |
-
)
|
1097 |
-
|
1098 |
-
|
1099 |
-
def patch_pipe(
|
1100 |
-
pipe,
|
1101 |
-
maybe_unet_path,
|
1102 |
-
token: Optional[str] = None,
|
1103 |
-
r: int = 4,
|
1104 |
-
patch_unet=True,
|
1105 |
-
patch_text=True,
|
1106 |
-
patch_ti=True,
|
1107 |
-
idempotent_token=True,
|
1108 |
-
unet_target_replace_module=DEFAULT_TARGET_REPLACE,
|
1109 |
-
text_target_replace_module=TEXT_ENCODER_DEFAULT_TARGET_REPLACE,
|
1110 |
-
):
|
1111 |
-
if maybe_unet_path.endswith(".pt"):
|
1112 |
-
# torch format
|
1113 |
-
|
1114 |
-
if maybe_unet_path.endswith(".ti.pt"):
|
1115 |
-
unet_path = maybe_unet_path[:-6] + ".pt"
|
1116 |
-
elif maybe_unet_path.endswith(".text_encoder.pt"):
|
1117 |
-
unet_path = maybe_unet_path[:-16] + ".pt"
|
1118 |
-
else:
|
1119 |
-
unet_path = maybe_unet_path
|
1120 |
-
|
1121 |
-
ti_path = _ti_lora_path(unet_path)
|
1122 |
-
text_path = _text_lora_path(unet_path)
|
1123 |
-
|
1124 |
-
if patch_unet:
|
1125 |
-
print("LoRA : Patching Unet")
|
1126 |
-
monkeypatch_or_replace_lora(
|
1127 |
-
pipe.unet,
|
1128 |
-
torch.load(unet_path),
|
1129 |
-
r=r,
|
1130 |
-
target_replace_module=unet_target_replace_module,
|
1131 |
-
)
|
1132 |
-
|
1133 |
-
if patch_text:
|
1134 |
-
print("LoRA : Patching text encoder")
|
1135 |
-
monkeypatch_or_replace_lora(
|
1136 |
-
pipe.text_encoder,
|
1137 |
-
torch.load(text_path),
|
1138 |
-
target_replace_module=text_target_replace_module,
|
1139 |
-
r=r,
|
1140 |
-
)
|
1141 |
-
if patch_ti:
|
1142 |
-
print("LoRA : Patching token input")
|
1143 |
-
token = load_learned_embed_in_clip(
|
1144 |
-
ti_path,
|
1145 |
-
pipe.text_encoder,
|
1146 |
-
pipe.tokenizer,
|
1147 |
-
token=token,
|
1148 |
-
idempotent=idempotent_token,
|
1149 |
-
)
|
1150 |
-
|
1151 |
-
elif maybe_unet_path.endswith(".safetensors"):
|
1152 |
-
safeloras = safe_open(maybe_unet_path, framework="pt", device="cpu")
|
1153 |
-
monkeypatch_or_replace_safeloras(pipe, safeloras)
|
1154 |
-
tok_dict = parse_safeloras_embeds(safeloras)
|
1155 |
-
if patch_ti:
|
1156 |
-
apply_learned_embed_in_clip(
|
1157 |
-
tok_dict,
|
1158 |
-
pipe.text_encoder,
|
1159 |
-
pipe.tokenizer,
|
1160 |
-
token=token,
|
1161 |
-
idempotent=idempotent_token,
|
1162 |
-
)
|
1163 |
-
return tok_dict
|
1164 |
-
|
1165 |
-
|
1166 |
-
@torch.no_grad()
|
1167 |
-
def inspect_lora(model):
|
1168 |
-
moved = {}
|
1169 |
-
|
1170 |
-
for name, _module in model.named_modules():
|
1171 |
-
if _module.__class__.__name__ in ["LoraInjectedLinear", "LoraInjectedConv2d"]:
|
1172 |
-
ups = _module.lora_up.weight.data.clone()
|
1173 |
-
downs = _module.lora_down.weight.data.clone()
|
1174 |
-
|
1175 |
-
wght: torch.Tensor = ups.flatten(1) @ downs.flatten(1)
|
1176 |
-
|
1177 |
-
dist = wght.flatten().abs().mean().item()
|
1178 |
-
if name in moved:
|
1179 |
-
moved[name].append(dist)
|
1180 |
-
else:
|
1181 |
-
moved[name] = [dist]
|
1182 |
-
|
1183 |
-
return moved
|
1184 |
-
|
1185 |
-
|
1186 |
-
def save_all(
|
1187 |
-
unet,
|
1188 |
-
text_encoder,
|
1189 |
-
save_path,
|
1190 |
-
placeholder_token_ids=None,
|
1191 |
-
placeholder_tokens=None,
|
1192 |
-
save_lora=True,
|
1193 |
-
save_ti=True,
|
1194 |
-
target_replace_module_text=TEXT_ENCODER_DEFAULT_TARGET_REPLACE,
|
1195 |
-
target_replace_module_unet=DEFAULT_TARGET_REPLACE,
|
1196 |
-
safe_form=True,
|
1197 |
-
):
|
1198 |
-
if not safe_form:
|
1199 |
-
# save ti
|
1200 |
-
if save_ti:
|
1201 |
-
ti_path = _ti_lora_path(save_path)
|
1202 |
-
learned_embeds_dict = {}
|
1203 |
-
for tok, tok_id in zip(placeholder_tokens, placeholder_token_ids):
|
1204 |
-
learned_embeds = text_encoder.get_input_embeddings().weight[tok_id]
|
1205 |
-
print(
|
1206 |
-
f"Current Learned Embeddings for {tok}:, id {tok_id} ",
|
1207 |
-
learned_embeds[:4],
|
1208 |
-
)
|
1209 |
-
learned_embeds_dict[tok] = learned_embeds.detach().cpu()
|
1210 |
-
|
1211 |
-
torch.save(learned_embeds_dict, ti_path)
|
1212 |
-
print("Ti saved to ", ti_path)
|
1213 |
-
|
1214 |
-
# save text encoder
|
1215 |
-
if save_lora:
|
1216 |
-
|
1217 |
-
save_lora_weight(
|
1218 |
-
unet, save_path, target_replace_module=target_replace_module_unet
|
1219 |
-
)
|
1220 |
-
print("Unet saved to ", save_path)
|
1221 |
-
|
1222 |
-
save_lora_weight(
|
1223 |
-
text_encoder,
|
1224 |
-
_text_lora_path(save_path),
|
1225 |
-
target_replace_module=target_replace_module_text,
|
1226 |
-
)
|
1227 |
-
print("Text Encoder saved to ", _text_lora_path(save_path))
|
1228 |
-
|
1229 |
-
else:
|
1230 |
-
assert save_path.endswith(
|
1231 |
-
".safetensors"
|
1232 |
-
), f"Save path : {save_path} should end with .safetensors"
|
1233 |
-
|
1234 |
-
loras = {}
|
1235 |
-
embeds = {}
|
1236 |
-
|
1237 |
-
if save_lora:
|
1238 |
-
|
1239 |
-
loras["unet"] = (unet, target_replace_module_unet)
|
1240 |
-
loras["text_encoder"] = (text_encoder, target_replace_module_text)
|
1241 |
-
|
1242 |
-
if save_ti:
|
1243 |
-
for tok, tok_id in zip(placeholder_tokens, placeholder_token_ids):
|
1244 |
-
learned_embeds = text_encoder.get_input_embeddings().weight[tok_id]
|
1245 |
-
print(
|
1246 |
-
f"Current Learned Embeddings for {tok}:, id {tok_id} ",
|
1247 |
-
learned_embeds[:4],
|
1248 |
-
)
|
1249 |
-
embeds[tok] = learned_embeds.detach().cpu()
|
1250 |
-
|
1251 |
-
save_safeloras_with_embeds(loras, embeds, save_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lvdm/{samplers → models/samplers}/ddim.py
RENAMED
@@ -1,10 +1,8 @@
|
|
1 |
-
"""SAMPLING ONLY."""
|
2 |
-
|
3 |
-
import torch
|
4 |
import numpy as np
|
5 |
from tqdm import tqdm
|
6 |
-
|
7 |
-
from lvdm.models.
|
|
|
8 |
|
9 |
|
10 |
class DDIMSampler(object):
|
@@ -31,6 +29,15 @@ class DDIMSampler(object):
|
|
31 |
self.register_buffer('betas', to_torch(self.model.betas))
|
32 |
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
|
33 |
self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
# calculations for diffusion q(x_t | x_{t-1}) and others
|
36 |
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
|
@@ -59,6 +66,7 @@ class DDIMSampler(object):
|
|
59 |
shape,
|
60 |
conditioning=None,
|
61 |
callback=None,
|
|
|
62 |
img_callback=None,
|
63 |
quantize_x0=False,
|
64 |
eta=0.,
|
@@ -74,9 +82,6 @@ class DDIMSampler(object):
|
|
74 |
log_every_t=100,
|
75 |
unconditional_guidance_scale=1.,
|
76 |
unconditional_conditioning=None,
|
77 |
-
postprocess_fn=None,
|
78 |
-
sample_noise=None,
|
79 |
-
cond_fn=None,
|
80 |
# this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
|
81 |
**kwargs
|
82 |
):
|
@@ -86,11 +91,11 @@ class DDIMSampler(object):
|
|
86 |
if isinstance(conditioning, dict):
|
87 |
try:
|
88 |
cbs = conditioning[list(conditioning.keys())[0]].shape[0]
|
89 |
-
if cbs != batch_size:
|
90 |
-
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
|
91 |
except:
|
92 |
-
|
93 |
-
|
|
|
|
|
94 |
else:
|
95 |
if conditioning.shape[0] != batch_size:
|
96 |
print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
|
@@ -104,6 +109,7 @@ class DDIMSampler(object):
|
|
104 |
elif len(shape) == 4:
|
105 |
C, T, H, W = shape
|
106 |
size = (batch_size, C, T, H, W)
|
|
|
107 |
|
108 |
samples, intermediates = self.ddim_sampling(conditioning, size,
|
109 |
callback=callback,
|
@@ -119,12 +125,8 @@ class DDIMSampler(object):
|
|
119 |
log_every_t=log_every_t,
|
120 |
unconditional_guidance_scale=unconditional_guidance_scale,
|
121 |
unconditional_conditioning=unconditional_conditioning,
|
122 |
-
postprocess_fn=postprocess_fn,
|
123 |
-
sample_noise=sample_noise,
|
124 |
-
cond_fn=cond_fn,
|
125 |
verbose=verbose,
|
126 |
-
**kwargs
|
127 |
-
)
|
128 |
return samples, intermediates
|
129 |
|
130 |
@torch.no_grad()
|
@@ -133,13 +135,11 @@ class DDIMSampler(object):
|
|
133 |
callback=None, timesteps=None, quantize_denoised=False,
|
134 |
mask=None, x0=None, img_callback=None, log_every_t=100,
|
135 |
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
136 |
-
unconditional_guidance_scale=1., unconditional_conditioning=None,
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
device = self.model.betas.device
|
142 |
-
|
143 |
b = shape[0]
|
144 |
if x_T is None:
|
145 |
img = torch.randn(shape, device=device)
|
@@ -151,6 +151,7 @@ class DDIMSampler(object):
|
|
151 |
elif timesteps is not None and not ddim_use_original_steps:
|
152 |
subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
|
153 |
timesteps = self.ddim_timesteps[:subset_end]
|
|
|
154 |
intermediates = {'x_inter': [img], 'pred_x0': [img]}
|
155 |
time_range = reversed(range(0,timesteps)) if ddim_use_original_steps else np.flip(timesteps)
|
156 |
total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
|
@@ -159,31 +160,46 @@ class DDIMSampler(object):
|
|
159 |
else:
|
160 |
iterator = time_range
|
161 |
|
|
|
|
|
162 |
for i, step in enumerate(iterator):
|
163 |
index = total_steps - i - 1
|
164 |
ts = torch.full((b,), step, device=device, dtype=torch.long)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
|
166 |
-
|
167 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
outs = self.p_sample_ddim(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
|
170 |
quantize_denoised=quantize_denoised, temperature=temperature,
|
171 |
noise_dropout=noise_dropout, score_corrector=score_corrector,
|
172 |
corrector_kwargs=corrector_kwargs,
|
173 |
unconditional_guidance_scale=unconditional_guidance_scale,
|
174 |
unconditional_conditioning=unconditional_conditioning,
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
if mask is not None:
|
179 |
-
# use mask to blend x_known_t-1 & x_sample_t-1
|
180 |
-
assert x0 is not None
|
181 |
-
x0 = x0.to(img.device)
|
182 |
-
mask = mask.to(img.device)
|
183 |
-
t = torch.tensor([step-1]*x0.shape[0], dtype=torch.long, device=img.device)
|
184 |
-
img_known = self.model.q_sample(x0, t)
|
185 |
-
img = img_known * mask + (1. - mask) * img
|
186 |
|
|
|
187 |
if callback: callback(i)
|
188 |
if img_callback: img_callback(pred_x0, i)
|
189 |
|
@@ -196,10 +212,8 @@ class DDIMSampler(object):
|
|
196 |
@torch.no_grad()
|
197 |
def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
|
198 |
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
199 |
-
unconditional_guidance_scale=1., unconditional_conditioning=None,
|
200 |
-
|
201 |
-
**kwargs,
|
202 |
-
):
|
203 |
b, *_, device = *x.shape, x.device
|
204 |
if x.dim() == 5:
|
205 |
is_video = True
|
@@ -227,7 +241,12 @@ class DDIMSampler(object):
|
|
227 |
e_t = e_t + unconditional_guidance_scale * (e_t_uncond - e_t)
|
228 |
else:
|
229 |
raise NotImplementedError
|
230 |
-
|
|
|
|
|
|
|
|
|
|
|
231 |
if score_corrector is not None:
|
232 |
assert self.model.parameterization == "eps"
|
233 |
e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
|
@@ -249,19 +268,69 @@ class DDIMSampler(object):
|
|
249 |
|
250 |
# current prediction for x_0
|
251 |
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
|
252 |
-
# print(f't={t}, pred_x0, min={torch.min(pred_x0)}, max={torch.max(pred_x0)}',file=f)
|
253 |
if quantize_denoised:
|
254 |
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
|
255 |
# direction pointing to x_t
|
256 |
dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
|
|
|
|
|
|
|
|
|
257 |
|
258 |
-
if
|
259 |
-
|
260 |
-
if
|
261 |
-
|
|
|
|
|
|
|
|
|
262 |
else:
|
263 |
-
|
264 |
-
|
265 |
-
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
|
266 |
-
|
267 |
return x_prev, pred_x0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import numpy as np
|
2 |
from tqdm import tqdm
|
3 |
+
import torch
|
4 |
+
from lvdm.models.utils_diffusion import make_ddim_sampling_parameters, make_ddim_timesteps
|
5 |
+
from lvdm.common import noise_like
|
6 |
|
7 |
|
8 |
class DDIMSampler(object):
|
|
|
29 |
self.register_buffer('betas', to_torch(self.model.betas))
|
30 |
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
|
31 |
self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
|
32 |
+
self.use_scale = self.model.use_scale
|
33 |
+
print('DDIM scale', self.use_scale)
|
34 |
+
|
35 |
+
if self.use_scale:
|
36 |
+
self.register_buffer('scale_arr', to_torch(self.model.scale_arr))
|
37 |
+
ddim_scale_arr = self.scale_arr.cpu()[self.ddim_timesteps]
|
38 |
+
self.register_buffer('ddim_scale_arr', ddim_scale_arr)
|
39 |
+
ddim_scale_arr = np.asarray([self.scale_arr.cpu()[0]] + self.scale_arr.cpu()[self.ddim_timesteps[:-1]].tolist())
|
40 |
+
self.register_buffer('ddim_scale_arr_prev', ddim_scale_arr)
|
41 |
|
42 |
# calculations for diffusion q(x_t | x_{t-1}) and others
|
43 |
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
|
|
|
66 |
shape,
|
67 |
conditioning=None,
|
68 |
callback=None,
|
69 |
+
normals_sequence=None,
|
70 |
img_callback=None,
|
71 |
quantize_x0=False,
|
72 |
eta=0.,
|
|
|
82 |
log_every_t=100,
|
83 |
unconditional_guidance_scale=1.,
|
84 |
unconditional_conditioning=None,
|
|
|
|
|
|
|
85 |
# this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
|
86 |
**kwargs
|
87 |
):
|
|
|
91 |
if isinstance(conditioning, dict):
|
92 |
try:
|
93 |
cbs = conditioning[list(conditioning.keys())[0]].shape[0]
|
|
|
|
|
94 |
except:
|
95 |
+
cbs = conditioning[list(conditioning.keys())[0]][0].shape[0]
|
96 |
+
|
97 |
+
if cbs != batch_size:
|
98 |
+
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
|
99 |
else:
|
100 |
if conditioning.shape[0] != batch_size:
|
101 |
print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
|
|
|
109 |
elif len(shape) == 4:
|
110 |
C, T, H, W = shape
|
111 |
size = (batch_size, C, T, H, W)
|
112 |
+
# print(f'Data shape for DDIM sampling is {size}, eta {eta}')
|
113 |
|
114 |
samples, intermediates = self.ddim_sampling(conditioning, size,
|
115 |
callback=callback,
|
|
|
125 |
log_every_t=log_every_t,
|
126 |
unconditional_guidance_scale=unconditional_guidance_scale,
|
127 |
unconditional_conditioning=unconditional_conditioning,
|
|
|
|
|
|
|
128 |
verbose=verbose,
|
129 |
+
**kwargs)
|
|
|
130 |
return samples, intermediates
|
131 |
|
132 |
@torch.no_grad()
|
|
|
135 |
callback=None, timesteps=None, quantize_denoised=False,
|
136 |
mask=None, x0=None, img_callback=None, log_every_t=100,
|
137 |
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
138 |
+
unconditional_guidance_scale=1., unconditional_conditioning=None, verbose=True,
|
139 |
+
cond_tau=1., target_size=None, start_timesteps=None,
|
140 |
+
**kwargs):
|
141 |
+
device = self.model.betas.device
|
142 |
+
print('ddim device', device)
|
|
|
|
|
143 |
b = shape[0]
|
144 |
if x_T is None:
|
145 |
img = torch.randn(shape, device=device)
|
|
|
151 |
elif timesteps is not None and not ddim_use_original_steps:
|
152 |
subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
|
153 |
timesteps = self.ddim_timesteps[:subset_end]
|
154 |
+
|
155 |
intermediates = {'x_inter': [img], 'pred_x0': [img]}
|
156 |
time_range = reversed(range(0,timesteps)) if ddim_use_original_steps else np.flip(timesteps)
|
157 |
total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
|
|
|
160 |
else:
|
161 |
iterator = time_range
|
162 |
|
163 |
+
init_x0 = False
|
164 |
+
clean_cond = kwargs.pop("clean_cond", False)
|
165 |
for i, step in enumerate(iterator):
|
166 |
index = total_steps - i - 1
|
167 |
ts = torch.full((b,), step, device=device, dtype=torch.long)
|
168 |
+
if start_timesteps is not None:
|
169 |
+
assert x0 is not None
|
170 |
+
if step > start_timesteps*time_range[0]:
|
171 |
+
continue
|
172 |
+
elif not init_x0:
|
173 |
+
img = self.model.q_sample(x0, ts)
|
174 |
+
init_x0 = True
|
175 |
|
176 |
+
# use mask to blend noised original latent (img_orig) & new sampled latent (img)
|
177 |
+
if mask is not None:
|
178 |
+
assert x0 is not None
|
179 |
+
if clean_cond:
|
180 |
+
img_orig = x0
|
181 |
+
else:
|
182 |
+
img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass? <ddim inversion>
|
183 |
+
img = img_orig * mask + (1. - mask) * img # keep original & modify use img
|
184 |
|
185 |
+
index_clip = int((1 - cond_tau) * total_steps)
|
186 |
+
if index <= index_clip and target_size is not None:
|
187 |
+
target_size_ = [target_size[0], target_size[1]//8, target_size[2]//8]
|
188 |
+
img = torch.nn.functional.interpolate(
|
189 |
+
img,
|
190 |
+
size=target_size_,
|
191 |
+
mode="nearest",
|
192 |
+
)
|
193 |
outs = self.p_sample_ddim(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
|
194 |
quantize_denoised=quantize_denoised, temperature=temperature,
|
195 |
noise_dropout=noise_dropout, score_corrector=score_corrector,
|
196 |
corrector_kwargs=corrector_kwargs,
|
197 |
unconditional_guidance_scale=unconditional_guidance_scale,
|
198 |
unconditional_conditioning=unconditional_conditioning,
|
199 |
+
x0=x0,
|
200 |
+
**kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
201 |
|
202 |
+
img, pred_x0 = outs
|
203 |
if callback: callback(i)
|
204 |
if img_callback: img_callback(pred_x0, i)
|
205 |
|
|
|
212 |
@torch.no_grad()
|
213 |
def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
|
214 |
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
215 |
+
unconditional_guidance_scale=1., unconditional_conditioning=None,
|
216 |
+
uc_type=None, conditional_guidance_scale_temporal=None, **kwargs):
|
|
|
|
|
217 |
b, *_, device = *x.shape, x.device
|
218 |
if x.dim() == 5:
|
219 |
is_video = True
|
|
|
241 |
e_t = e_t + unconditional_guidance_scale * (e_t_uncond - e_t)
|
242 |
else:
|
243 |
raise NotImplementedError
|
244 |
+
# temporal guidance
|
245 |
+
if conditional_guidance_scale_temporal is not None:
|
246 |
+
e_t_temporal = self.model.apply_model(x, t, c, **kwargs)
|
247 |
+
e_t_image = self.model.apply_model(x, t, c, no_temporal_attn=True, **kwargs)
|
248 |
+
e_t = e_t + conditional_guidance_scale_temporal * (e_t_temporal - e_t_image)
|
249 |
+
|
250 |
if score_corrector is not None:
|
251 |
assert self.model.parameterization == "eps"
|
252 |
e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
|
|
|
268 |
|
269 |
# current prediction for x_0
|
270 |
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
|
|
|
271 |
if quantize_denoised:
|
272 |
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
|
273 |
# direction pointing to x_t
|
274 |
dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
|
275 |
+
|
276 |
+
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
|
277 |
+
if noise_dropout > 0.:
|
278 |
+
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
279 |
|
280 |
+
alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
|
281 |
+
if self.use_scale:
|
282 |
+
scale_arr = self.model.scale_arr if use_original_steps else self.ddim_scale_arr
|
283 |
+
scale_t = torch.full(size, scale_arr[index], device=device)
|
284 |
+
scale_arr_prev = self.model.scale_arr_prev if use_original_steps else self.ddim_scale_arr_prev
|
285 |
+
scale_t_prev = torch.full(size, scale_arr_prev[index], device=device)
|
286 |
+
pred_x0 /= scale_t
|
287 |
+
x_prev = a_prev.sqrt() * scale_t_prev * pred_x0 + dir_xt + noise
|
288 |
else:
|
289 |
+
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
|
290 |
+
|
|
|
|
|
291 |
return x_prev, pred_x0
|
292 |
+
|
293 |
+
|
294 |
+
@torch.no_grad()
|
295 |
+
def stochastic_encode(self, x0, t, use_original_steps=False, noise=None):
|
296 |
+
# fast, but does not allow for exact reconstruction
|
297 |
+
# t serves as an index to gather the correct alphas
|
298 |
+
if use_original_steps:
|
299 |
+
sqrt_alphas_cumprod = self.sqrt_alphas_cumprod
|
300 |
+
sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod
|
301 |
+
else:
|
302 |
+
sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas)
|
303 |
+
sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas
|
304 |
+
|
305 |
+
if noise is None:
|
306 |
+
noise = torch.randn_like(x0)
|
307 |
+
|
308 |
+
def extract_into_tensor(a, t, x_shape):
|
309 |
+
b, *_ = t.shape
|
310 |
+
out = a.gather(-1, t)
|
311 |
+
return out.reshape(b, *((1,) * (len(x_shape) - 1)))
|
312 |
+
|
313 |
+
return (extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0 +
|
314 |
+
extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * noise)
|
315 |
+
|
316 |
+
@torch.no_grad()
|
317 |
+
def decode(self, x_latent, cond, t_start, unconditional_guidance_scale=1.0, unconditional_conditioning=None,
|
318 |
+
use_original_steps=False):
|
319 |
+
|
320 |
+
timesteps = np.arange(self.ddpm_num_timesteps) if use_original_steps else self.ddim_timesteps
|
321 |
+
timesteps = timesteps[:t_start]
|
322 |
+
|
323 |
+
time_range = np.flip(timesteps)
|
324 |
+
total_steps = timesteps.shape[0]
|
325 |
+
print(f"Running DDIM Sampling with {total_steps} timesteps")
|
326 |
+
|
327 |
+
iterator = tqdm(time_range, desc='Decoding image', total=total_steps)
|
328 |
+
x_dec = x_latent
|
329 |
+
for i, step in enumerate(iterator):
|
330 |
+
index = total_steps - i - 1
|
331 |
+
ts = torch.full((x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long)
|
332 |
+
x_dec, _ = self.p_sample_ddim(x_dec, cond, ts, index=index, use_original_steps=use_original_steps,
|
333 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
334 |
+
unconditional_conditioning=unconditional_conditioning)
|
335 |
+
return x_dec
|
336 |
+
|
lvdm/models/{modules/util.py → utils_diffusion.py}
RENAMED
@@ -1,13 +1,31 @@
|
|
1 |
import math
|
2 |
-
from inspect import isfunction
|
3 |
-
|
4 |
-
import torch
|
5 |
import numpy as np
|
6 |
-
import torch.nn as nn
|
7 |
from einops import repeat
|
|
|
8 |
import torch.nn.functional as F
|
9 |
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
|
13 |
def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
@@ -15,6 +33,7 @@ def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2,
|
|
15 |
betas = (
|
16 |
torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2
|
17 |
)
|
|
|
18 |
elif schedule == "cosine":
|
19 |
timesteps = (
|
20 |
torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s
|
@@ -24,6 +43,7 @@ def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2,
|
|
24 |
alphas = alphas / alphas[0]
|
25 |
betas = 1 - alphas[1:] / alphas[:-1]
|
26 |
betas = np.clip(betas, a_min=0, a_max=0.999)
|
|
|
27 |
elif schedule == "sqrt_linear":
|
28 |
betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64)
|
29 |
elif schedule == "sqrt":
|
@@ -42,6 +62,7 @@ def make_ddim_timesteps(ddim_discr_method, num_ddim_timesteps, num_ddpm_timestep
|
|
42 |
else:
|
43 |
raise NotImplementedError(f'There is no ddim discretization method called "{ddim_discr_method}"')
|
44 |
|
|
|
45 |
# add one to get the final alpha values right (the ones from first scale to data during sampling)
|
46 |
steps_out = ddim_timesteps + 1
|
47 |
if verbose:
|
@@ -51,6 +72,7 @@ def make_ddim_timesteps(ddim_discr_method, num_ddim_timesteps, num_ddpm_timestep
|
|
51 |
|
52 |
def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True):
|
53 |
# select alphas for computing the variance schedule
|
|
|
54 |
alphas = alphacums[ddim_timesteps]
|
55 |
alphas_prev = np.asarray([alphacums[0]] + alphacums[ddim_timesteps[:-1]].tolist())
|
56 |
|
@@ -79,270 +101,4 @@ def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
|
|
79 |
t1 = i / num_diffusion_timesteps
|
80 |
t2 = (i + 1) / num_diffusion_timesteps
|
81 |
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
|
82 |
-
return np.array(betas)
|
83 |
-
|
84 |
-
|
85 |
-
def extract_into_tensor(a, t, x_shape):
|
86 |
-
b, *_ = t.shape
|
87 |
-
out = a.gather(-1, t)
|
88 |
-
return out.reshape(b, *((1,) * (len(x_shape) - 1)))
|
89 |
-
|
90 |
-
|
91 |
-
def checkpoint(func, inputs, params, flag):
|
92 |
-
"""
|
93 |
-
Evaluate a function without caching intermediate activations, allowing for
|
94 |
-
reduced memory at the expense of extra compute in the backward pass.
|
95 |
-
:param func: the function to evaluate.
|
96 |
-
:param inputs: the argument sequence to pass to `func`.
|
97 |
-
:param params: a sequence of parameters `func` depends on but does not
|
98 |
-
explicitly take as arguments.
|
99 |
-
:param flag: if False, disable gradient checkpointing.
|
100 |
-
"""
|
101 |
-
if flag:
|
102 |
-
args = tuple(inputs) + tuple(params)
|
103 |
-
return CheckpointFunction.apply(func, len(inputs), *args)
|
104 |
-
else:
|
105 |
-
return func(*inputs)
|
106 |
-
|
107 |
-
|
108 |
-
class CheckpointFunction(torch.autograd.Function):
|
109 |
-
@staticmethod
|
110 |
-
@torch.cuda.amp.custom_fwd
|
111 |
-
def forward(ctx, run_function, length, *args):
|
112 |
-
ctx.run_function = run_function
|
113 |
-
ctx.input_tensors = list(args[:length])
|
114 |
-
ctx.input_params = list(args[length:])
|
115 |
-
|
116 |
-
with torch.no_grad():
|
117 |
-
output_tensors = ctx.run_function(*ctx.input_tensors)
|
118 |
-
return output_tensors
|
119 |
-
|
120 |
-
@staticmethod
|
121 |
-
@torch.cuda.amp.custom_bwd
|
122 |
-
def backward(ctx, *output_grads):
|
123 |
-
ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors]
|
124 |
-
with torch.enable_grad():
|
125 |
-
# Fixes a bug where the first op in run_function modifies the
|
126 |
-
# Tensor storage in place, which is not allowed for detach()'d
|
127 |
-
# Tensors.
|
128 |
-
shallow_copies = [x.view_as(x) for x in ctx.input_tensors]
|
129 |
-
output_tensors = ctx.run_function(*shallow_copies)
|
130 |
-
input_grads = torch.autograd.grad(
|
131 |
-
output_tensors,
|
132 |
-
ctx.input_tensors + ctx.input_params,
|
133 |
-
output_grads,
|
134 |
-
allow_unused=True,
|
135 |
-
)
|
136 |
-
del ctx.input_tensors
|
137 |
-
del ctx.input_params
|
138 |
-
del output_tensors
|
139 |
-
return (None, None) + input_grads
|
140 |
-
|
141 |
-
|
142 |
-
def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
|
143 |
-
"""
|
144 |
-
Create sinusoidal timestep embeddings.
|
145 |
-
:param timesteps: a 1-D Tensor of N indices, one per batch element.
|
146 |
-
These may be fractional.
|
147 |
-
:param dim: the dimension of the output.
|
148 |
-
:param max_period: controls the minimum frequency of the embeddings.
|
149 |
-
:return: an [N x dim] Tensor of positional embeddings.
|
150 |
-
"""
|
151 |
-
if not repeat_only:
|
152 |
-
half = dim // 2
|
153 |
-
freqs = torch.exp(
|
154 |
-
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
|
155 |
-
).to(device=timesteps.device)
|
156 |
-
args = timesteps[:, None].float() * freqs[None]
|
157 |
-
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
158 |
-
if dim % 2:
|
159 |
-
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
160 |
-
else:
|
161 |
-
embedding = repeat(timesteps, 'b -> b d', d=dim)
|
162 |
-
return embedding
|
163 |
-
|
164 |
-
|
165 |
-
def zero_module(module):
|
166 |
-
"""
|
167 |
-
Zero out the parameters of a module and return it.
|
168 |
-
"""
|
169 |
-
for p in module.parameters():
|
170 |
-
p.detach().zero_()
|
171 |
-
return module
|
172 |
-
|
173 |
-
|
174 |
-
def scale_module(module, scale):
|
175 |
-
"""
|
176 |
-
Scale the parameters of a module and return it.
|
177 |
-
"""
|
178 |
-
for p in module.parameters():
|
179 |
-
p.detach().mul_(scale)
|
180 |
-
return module
|
181 |
-
|
182 |
-
|
183 |
-
def mean_flat(tensor):
|
184 |
-
"""
|
185 |
-
Take the mean over all non-batch dimensions.
|
186 |
-
"""
|
187 |
-
return tensor.mean(dim=list(range(1, len(tensor.shape))))
|
188 |
-
|
189 |
-
|
190 |
-
def normalization(channels):
|
191 |
-
"""
|
192 |
-
Make a standard normalization layer.
|
193 |
-
:param channels: number of input channels.
|
194 |
-
:return: an nn.Module for normalization.
|
195 |
-
"""
|
196 |
-
return GroupNorm32(32, channels)
|
197 |
-
|
198 |
-
def Normalize(in_channels):
|
199 |
-
return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
|
200 |
-
|
201 |
-
def identity(*args, **kwargs):
|
202 |
-
return nn.Identity()
|
203 |
-
|
204 |
-
class Normalization(nn.Module):
|
205 |
-
def __init__(self, output_size, eps=1e-5, norm_type='gn'):
|
206 |
-
super(Normalization, self).__init__()
|
207 |
-
# epsilon to avoid dividing by 0
|
208 |
-
self.eps = eps
|
209 |
-
self.norm_type = norm_type
|
210 |
-
|
211 |
-
if self.norm_type in ['bn', 'in']:
|
212 |
-
self.register_buffer('stored_mean', torch.zeros(output_size))
|
213 |
-
self.register_buffer('stored_var', torch.ones(output_size))
|
214 |
-
|
215 |
-
def forward(self, x):
|
216 |
-
if self.norm_type == 'bn':
|
217 |
-
out = F.batch_norm(x, self.stored_mean, self.stored_var, None,
|
218 |
-
None,
|
219 |
-
self.training, 0.1, self.eps)
|
220 |
-
elif self.norm_type == 'in':
|
221 |
-
out = F.instance_norm(x, self.stored_mean, self.stored_var,
|
222 |
-
None, None,
|
223 |
-
self.training, 0.1, self.eps)
|
224 |
-
elif self.norm_type == 'gn':
|
225 |
-
out = F.group_norm(x, 32)
|
226 |
-
elif self.norm_type == 'nonorm':
|
227 |
-
out = x
|
228 |
-
return out
|
229 |
-
|
230 |
-
|
231 |
-
class CCNormalization(nn.Module):
|
232 |
-
def __init__(self, embed_dim, feature_dim, *args, **kwargs):
|
233 |
-
super(CCNormalization, self).__init__()
|
234 |
-
|
235 |
-
self.embed_dim = embed_dim
|
236 |
-
self.feature_dim = feature_dim
|
237 |
-
self.norm = Normalization(feature_dim, *args, **kwargs)
|
238 |
-
|
239 |
-
self.gain = nn.Linear(self.embed_dim, self.feature_dim)
|
240 |
-
self.bias = nn.Linear(self.embed_dim, self.feature_dim)
|
241 |
-
|
242 |
-
def forward(self, x, y):
|
243 |
-
shape = [1] * (x.dim() - 2)
|
244 |
-
gain = (1 + self.gain(y)).view(y.size(0), -1, *shape)
|
245 |
-
bias = self.bias(y).view(y.size(0), -1, *shape)
|
246 |
-
return self.norm(x) * gain + bias
|
247 |
-
|
248 |
-
|
249 |
-
def nonlinearity(type='silu'):
|
250 |
-
if type == 'silu':
|
251 |
-
return nn.SiLU()
|
252 |
-
elif type == 'leaky_relu':
|
253 |
-
return nn.LeakyReLU()
|
254 |
-
|
255 |
-
|
256 |
-
class GEGLU(nn.Module):
|
257 |
-
def __init__(self, dim_in, dim_out):
|
258 |
-
super().__init__()
|
259 |
-
self.proj = nn.Linear(dim_in, dim_out * 2)
|
260 |
-
|
261 |
-
def forward(self, x):
|
262 |
-
x, gate = self.proj(x).chunk(2, dim=-1)
|
263 |
-
return x * F.gelu(gate)
|
264 |
-
|
265 |
-
|
266 |
-
class SiLU(nn.Module):
|
267 |
-
def forward(self, x):
|
268 |
-
return x * torch.sigmoid(x)
|
269 |
-
|
270 |
-
|
271 |
-
class GroupNorm32(nn.GroupNorm):
|
272 |
-
def forward(self, x):
|
273 |
-
return super().forward(x.float()).type(x.dtype)
|
274 |
-
|
275 |
-
|
276 |
-
def conv_nd(dims, *args, **kwargs):
|
277 |
-
"""
|
278 |
-
Create a 1D, 2D, or 3D convolution module.
|
279 |
-
"""
|
280 |
-
if dims == 1:
|
281 |
-
return nn.Conv1d(*args, **kwargs)
|
282 |
-
elif dims == 2:
|
283 |
-
return nn.Conv2d(*args, **kwargs)
|
284 |
-
elif dims == 3:
|
285 |
-
return nn.Conv3d(*args, **kwargs)
|
286 |
-
raise ValueError(f"unsupported dimensions: {dims}")
|
287 |
-
|
288 |
-
|
289 |
-
def linear(*args, **kwargs):
|
290 |
-
"""
|
291 |
-
Create a linear module.
|
292 |
-
"""
|
293 |
-
return nn.Linear(*args, **kwargs)
|
294 |
-
|
295 |
-
|
296 |
-
def avg_pool_nd(dims, *args, **kwargs):
|
297 |
-
"""
|
298 |
-
Create a 1D, 2D, or 3D average pooling module.
|
299 |
-
"""
|
300 |
-
if dims == 1:
|
301 |
-
return nn.AvgPool1d(*args, **kwargs)
|
302 |
-
elif dims == 2:
|
303 |
-
return nn.AvgPool2d(*args, **kwargs)
|
304 |
-
elif dims == 3:
|
305 |
-
return nn.AvgPool3d(*args, **kwargs)
|
306 |
-
raise ValueError(f"unsupported dimensions: {dims}")
|
307 |
-
|
308 |
-
|
309 |
-
class HybridConditioner(nn.Module):
|
310 |
-
|
311 |
-
def __init__(self, c_concat_config, c_crossattn_config):
|
312 |
-
super().__init__()
|
313 |
-
self.concat_conditioner = instantiate_from_config(c_concat_config)
|
314 |
-
self.crossattn_conditioner = instantiate_from_config(c_crossattn_config)
|
315 |
-
|
316 |
-
def forward(self, c_concat, c_crossattn):
|
317 |
-
c_concat = self.concat_conditioner(c_concat)
|
318 |
-
c_crossattn = self.crossattn_conditioner(c_crossattn)
|
319 |
-
return {'c_concat': [c_concat], 'c_crossattn': [c_crossattn]}
|
320 |
-
|
321 |
-
|
322 |
-
def noise_like(shape, device, repeat=False):
|
323 |
-
repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
|
324 |
-
noise = lambda: torch.randn(shape, device=device)
|
325 |
-
return repeat_noise() if repeat else noise()
|
326 |
-
|
327 |
-
|
328 |
-
def init_(tensor):
|
329 |
-
dim = tensor.shape[-1]
|
330 |
-
std = 1 / math.sqrt(dim)
|
331 |
-
tensor.uniform_(-std, std)
|
332 |
-
return tensor
|
333 |
-
|
334 |
-
|
335 |
-
def exists(val):
|
336 |
-
return val is not None
|
337 |
-
|
338 |
-
|
339 |
-
def uniq(arr):
|
340 |
-
return{el: True for el in arr}.keys()
|
341 |
-
|
342 |
-
|
343 |
-
def default(val, d):
|
344 |
-
if exists(val):
|
345 |
-
return val
|
346 |
-
return d() if isfunction(d) else d
|
347 |
-
|
348 |
-
|
|
|
1 |
import math
|
|
|
|
|
|
|
2 |
import numpy as np
|
|
|
3 |
from einops import repeat
|
4 |
+
import torch
|
5 |
import torch.nn.functional as F
|
6 |
|
7 |
+
|
8 |
+
def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
|
9 |
+
"""
|
10 |
+
Create sinusoidal timestep embeddings.
|
11 |
+
:param timesteps: a 1-D Tensor of N indices, one per batch element.
|
12 |
+
These may be fractional.
|
13 |
+
:param dim: the dimension of the output.
|
14 |
+
:param max_period: controls the minimum frequency of the embeddings.
|
15 |
+
:return: an [N x dim] Tensor of positional embeddings.
|
16 |
+
"""
|
17 |
+
if not repeat_only:
|
18 |
+
half = dim // 2
|
19 |
+
freqs = torch.exp(
|
20 |
+
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
|
21 |
+
).to(device=timesteps.device)
|
22 |
+
args = timesteps[:, None].float() * freqs[None]
|
23 |
+
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
24 |
+
if dim % 2:
|
25 |
+
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
26 |
+
else:
|
27 |
+
embedding = repeat(timesteps, 'b -> b d', d=dim)
|
28 |
+
return embedding
|
29 |
|
30 |
|
31 |
def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
|
|
33 |
betas = (
|
34 |
torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2
|
35 |
)
|
36 |
+
|
37 |
elif schedule == "cosine":
|
38 |
timesteps = (
|
39 |
torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s
|
|
|
43 |
alphas = alphas / alphas[0]
|
44 |
betas = 1 - alphas[1:] / alphas[:-1]
|
45 |
betas = np.clip(betas, a_min=0, a_max=0.999)
|
46 |
+
|
47 |
elif schedule == "sqrt_linear":
|
48 |
betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64)
|
49 |
elif schedule == "sqrt":
|
|
|
62 |
else:
|
63 |
raise NotImplementedError(f'There is no ddim discretization method called "{ddim_discr_method}"')
|
64 |
|
65 |
+
# assert ddim_timesteps.shape[0] == num_ddim_timesteps
|
66 |
# add one to get the final alpha values right (the ones from first scale to data during sampling)
|
67 |
steps_out = ddim_timesteps + 1
|
68 |
if verbose:
|
|
|
72 |
|
73 |
def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True):
|
74 |
# select alphas for computing the variance schedule
|
75 |
+
# print(f'ddim_timesteps={ddim_timesteps}, len_alphacums={len(alphacums)}')
|
76 |
alphas = alphacums[ddim_timesteps]
|
77 |
alphas_prev = np.asarray([alphacums[0]] + alphacums[ddim_timesteps[:-1]].tolist())
|
78 |
|
|
|
101 |
t1 = i / num_diffusion_timesteps
|
102 |
t2 = (i + 1) / num_diffusion_timesteps
|
103 |
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
|
104 |
+
return np.array(betas)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lvdm/modules/attention.py
ADDED
@@ -0,0 +1,475 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from functools import partial
|
2 |
+
import torch
|
3 |
+
from torch import nn, einsum
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from einops import rearrange, repeat
|
6 |
+
try:
|
7 |
+
import xformers
|
8 |
+
import xformers.ops
|
9 |
+
XFORMERS_IS_AVAILBLE = True
|
10 |
+
except:
|
11 |
+
XFORMERS_IS_AVAILBLE = False
|
12 |
+
from lvdm.common import (
|
13 |
+
checkpoint,
|
14 |
+
exists,
|
15 |
+
default,
|
16 |
+
)
|
17 |
+
from lvdm.basics import (
|
18 |
+
zero_module,
|
19 |
+
)
|
20 |
+
|
21 |
+
class RelativePosition(nn.Module):
|
22 |
+
""" https://github.com/evelinehong/Transformer_Relative_Position_PyTorch/blob/master/relative_position.py """
|
23 |
+
|
24 |
+
def __init__(self, num_units, max_relative_position):
|
25 |
+
super().__init__()
|
26 |
+
self.num_units = num_units
|
27 |
+
self.max_relative_position = max_relative_position
|
28 |
+
self.embeddings_table = nn.Parameter(torch.Tensor(max_relative_position * 2 + 1, num_units))
|
29 |
+
nn.init.xavier_uniform_(self.embeddings_table)
|
30 |
+
|
31 |
+
def forward(self, length_q, length_k):
|
32 |
+
device = self.embeddings_table.device
|
33 |
+
range_vec_q = torch.arange(length_q, device=device)
|
34 |
+
range_vec_k = torch.arange(length_k, device=device)
|
35 |
+
distance_mat = range_vec_k[None, :] - range_vec_q[:, None]
|
36 |
+
distance_mat_clipped = torch.clamp(distance_mat, -self.max_relative_position, self.max_relative_position)
|
37 |
+
final_mat = distance_mat_clipped + self.max_relative_position
|
38 |
+
final_mat = final_mat.long()
|
39 |
+
embeddings = self.embeddings_table[final_mat]
|
40 |
+
return embeddings
|
41 |
+
|
42 |
+
|
43 |
+
class CrossAttention(nn.Module):
|
44 |
+
|
45 |
+
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.,
|
46 |
+
relative_position=False, temporal_length=None, img_cross_attention=False):
|
47 |
+
super().__init__()
|
48 |
+
inner_dim = dim_head * heads
|
49 |
+
context_dim = default(context_dim, query_dim)
|
50 |
+
|
51 |
+
self.scale = dim_head**-0.5
|
52 |
+
self.heads = heads
|
53 |
+
self.dim_head = dim_head
|
54 |
+
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
55 |
+
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
56 |
+
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
57 |
+
self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout))
|
58 |
+
|
59 |
+
self.image_cross_attention_scale = 1.0
|
60 |
+
self.text_context_len = 77
|
61 |
+
self.img_cross_attention = img_cross_attention
|
62 |
+
if self.img_cross_attention:
|
63 |
+
self.to_k_ip = nn.Linear(context_dim, inner_dim, bias=False)
|
64 |
+
self.to_v_ip = nn.Linear(context_dim, inner_dim, bias=False)
|
65 |
+
|
66 |
+
self.relative_position = relative_position
|
67 |
+
if self.relative_position:
|
68 |
+
assert(temporal_length is not None)
|
69 |
+
self.relative_position_k = RelativePosition(num_units=dim_head, max_relative_position=temporal_length)
|
70 |
+
self.relative_position_v = RelativePosition(num_units=dim_head, max_relative_position=temporal_length)
|
71 |
+
else:
|
72 |
+
## only used for spatial attention, while NOT for temporal attention
|
73 |
+
if XFORMERS_IS_AVAILBLE and temporal_length is None:
|
74 |
+
self.forward = self.efficient_forward
|
75 |
+
|
76 |
+
def forward(self, x, context=None, mask=None):
|
77 |
+
h = self.heads
|
78 |
+
|
79 |
+
q = self.to_q(x)
|
80 |
+
context = default(context, x)
|
81 |
+
## considering image token additionally
|
82 |
+
if context is not None and self.img_cross_attention:
|
83 |
+
context, context_img = context[:,:self.text_context_len,:], context[:,self.text_context_len:,:]
|
84 |
+
k = self.to_k(context)
|
85 |
+
v = self.to_v(context)
|
86 |
+
k_ip = self.to_k_ip(context_img)
|
87 |
+
v_ip = self.to_v_ip(context_img)
|
88 |
+
else:
|
89 |
+
k = self.to_k(context)
|
90 |
+
v = self.to_v(context)
|
91 |
+
|
92 |
+
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
|
93 |
+
sim = torch.einsum('b i d, b j d -> b i j', q, k) * self.scale
|
94 |
+
if self.relative_position:
|
95 |
+
len_q, len_k, len_v = q.shape[1], k.shape[1], v.shape[1]
|
96 |
+
k2 = self.relative_position_k(len_q, len_k)
|
97 |
+
sim2 = einsum('b t d, t s d -> b t s', q, k2) * self.scale # TODO check
|
98 |
+
sim += sim2
|
99 |
+
del k
|
100 |
+
|
101 |
+
if exists(mask):
|
102 |
+
## feasible for causal attention mask only
|
103 |
+
max_neg_value = -torch.finfo(sim.dtype).max
|
104 |
+
mask = repeat(mask, 'b i j -> (b h) i j', h=h)
|
105 |
+
sim.masked_fill_(~(mask>0.5), max_neg_value)
|
106 |
+
|
107 |
+
# attention, what we cannot get enough of
|
108 |
+
sim = sim.softmax(dim=-1)
|
109 |
+
out = torch.einsum('b i j, b j d -> b i d', sim, v)
|
110 |
+
if self.relative_position:
|
111 |
+
v2 = self.relative_position_v(len_q, len_v)
|
112 |
+
out2 = einsum('b t s, t s d -> b t d', sim, v2) # TODO check
|
113 |
+
out += out2
|
114 |
+
out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
|
115 |
+
|
116 |
+
## considering image token additionally
|
117 |
+
if context is not None and self.img_cross_attention:
|
118 |
+
k_ip, v_ip = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (k_ip, v_ip))
|
119 |
+
sim_ip = torch.einsum('b i d, b j d -> b i j', q, k_ip) * self.scale
|
120 |
+
del k_ip
|
121 |
+
sim_ip = sim_ip.softmax(dim=-1)
|
122 |
+
out_ip = torch.einsum('b i j, b j d -> b i d', sim_ip, v_ip)
|
123 |
+
out_ip = rearrange(out, '(b h) n d -> b n (h d)', h=h)
|
124 |
+
out = out + self.image_cross_attention_scale * out_ip
|
125 |
+
del q
|
126 |
+
|
127 |
+
return self.to_out(out)
|
128 |
+
|
129 |
+
def efficient_forward(self, x, context=None, mask=None):
|
130 |
+
q = self.to_q(x)
|
131 |
+
context = default(context, x)
|
132 |
+
|
133 |
+
## considering image token additionally
|
134 |
+
if context is not None and self.img_cross_attention:
|
135 |
+
context, context_img = context[:,:self.text_context_len,:], context[:,self.text_context_len:,:]
|
136 |
+
k = self.to_k(context)
|
137 |
+
v = self.to_v(context)
|
138 |
+
k_ip = self.to_k_ip(context_img)
|
139 |
+
v_ip = self.to_v_ip(context_img)
|
140 |
+
else:
|
141 |
+
k = self.to_k(context)
|
142 |
+
v = self.to_v(context)
|
143 |
+
|
144 |
+
b, _, _ = q.shape
|
145 |
+
q, k, v = map(
|
146 |
+
lambda t: t.unsqueeze(3)
|
147 |
+
.reshape(b, t.shape[1], self.heads, self.dim_head)
|
148 |
+
.permute(0, 2, 1, 3)
|
149 |
+
.reshape(b * self.heads, t.shape[1], self.dim_head)
|
150 |
+
.contiguous(),
|
151 |
+
(q, k, v),
|
152 |
+
)
|
153 |
+
# actually compute the attention, what we cannot get enough of
|
154 |
+
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=None)
|
155 |
+
|
156 |
+
## considering image token additionally
|
157 |
+
if context is not None and self.img_cross_attention:
|
158 |
+
k_ip, v_ip = map(
|
159 |
+
lambda t: t.unsqueeze(3)
|
160 |
+
.reshape(b, t.shape[1], self.heads, self.dim_head)
|
161 |
+
.permute(0, 2, 1, 3)
|
162 |
+
.reshape(b * self.heads, t.shape[1], self.dim_head)
|
163 |
+
.contiguous(),
|
164 |
+
(k_ip, v_ip),
|
165 |
+
)
|
166 |
+
out_ip = xformers.ops.memory_efficient_attention(q, k_ip, v_ip, attn_bias=None, op=None)
|
167 |
+
out_ip = (
|
168 |
+
out_ip.unsqueeze(0)
|
169 |
+
.reshape(b, self.heads, out.shape[1], self.dim_head)
|
170 |
+
.permute(0, 2, 1, 3)
|
171 |
+
.reshape(b, out.shape[1], self.heads * self.dim_head)
|
172 |
+
)
|
173 |
+
|
174 |
+
if exists(mask):
|
175 |
+
raise NotImplementedError
|
176 |
+
out = (
|
177 |
+
out.unsqueeze(0)
|
178 |
+
.reshape(b, self.heads, out.shape[1], self.dim_head)
|
179 |
+
.permute(0, 2, 1, 3)
|
180 |
+
.reshape(b, out.shape[1], self.heads * self.dim_head)
|
181 |
+
)
|
182 |
+
if context is not None and self.img_cross_attention:
|
183 |
+
out = out + self.image_cross_attention_scale * out_ip
|
184 |
+
return self.to_out(out)
|
185 |
+
|
186 |
+
|
187 |
+
class BasicTransformerBlock(nn.Module):
|
188 |
+
|
189 |
+
def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True,
|
190 |
+
disable_self_attn=False, attention_cls=None, img_cross_attention=False):
|
191 |
+
super().__init__()
|
192 |
+
attn_cls = CrossAttention if attention_cls is None else attention_cls
|
193 |
+
self.disable_self_attn = disable_self_attn
|
194 |
+
self.attn1 = attn_cls(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout,
|
195 |
+
context_dim=context_dim if self.disable_self_attn else None)
|
196 |
+
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
|
197 |
+
self.attn2 = attn_cls(query_dim=dim, context_dim=context_dim, heads=n_heads, dim_head=d_head, dropout=dropout,
|
198 |
+
img_cross_attention=img_cross_attention)
|
199 |
+
self.norm1 = nn.LayerNorm(dim)
|
200 |
+
self.norm2 = nn.LayerNorm(dim)
|
201 |
+
self.norm3 = nn.LayerNorm(dim)
|
202 |
+
self.checkpoint = checkpoint
|
203 |
+
|
204 |
+
def forward(self, x, context=None, mask=None):
|
205 |
+
## implementation tricks: because checkpointing doesn't support non-tensor (e.g. None or scalar) arguments
|
206 |
+
input_tuple = (x,) ## should not be (x), otherwise *input_tuple will decouple x into multiple arguments
|
207 |
+
if context is not None:
|
208 |
+
input_tuple = (x, context)
|
209 |
+
if mask is not None:
|
210 |
+
forward_mask = partial(self._forward, mask=mask)
|
211 |
+
return checkpoint(forward_mask, (x,), self.parameters(), self.checkpoint)
|
212 |
+
if context is not None and mask is not None:
|
213 |
+
input_tuple = (x, context, mask)
|
214 |
+
return checkpoint(self._forward, input_tuple, self.parameters(), self.checkpoint)
|
215 |
+
|
216 |
+
def _forward(self, x, context=None, mask=None):
|
217 |
+
x = self.attn1(self.norm1(x), context=context if self.disable_self_attn else None, mask=mask) + x
|
218 |
+
x = self.attn2(self.norm2(x), context=context, mask=mask) + x
|
219 |
+
x = self.ff(self.norm3(x)) + x
|
220 |
+
return x
|
221 |
+
|
222 |
+
|
223 |
+
class SpatialTransformer(nn.Module):
|
224 |
+
"""
|
225 |
+
Transformer block for image-like data in spatial axis.
|
226 |
+
First, project the input (aka embedding)
|
227 |
+
and reshape to b, t, d.
|
228 |
+
Then apply standard transformer action.
|
229 |
+
Finally, reshape to image
|
230 |
+
NEW: use_linear for more efficiency instead of the 1x1 convs
|
231 |
+
"""
|
232 |
+
|
233 |
+
def __init__(self, in_channels, n_heads, d_head, depth=1, dropout=0., context_dim=None,
|
234 |
+
use_checkpoint=True, disable_self_attn=False, use_linear=False, img_cross_attention=False):
|
235 |
+
super().__init__()
|
236 |
+
self.in_channels = in_channels
|
237 |
+
inner_dim = n_heads * d_head
|
238 |
+
self.norm = torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
|
239 |
+
if not use_linear:
|
240 |
+
self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
|
241 |
+
else:
|
242 |
+
self.proj_in = nn.Linear(in_channels, inner_dim)
|
243 |
+
|
244 |
+
self.transformer_blocks = nn.ModuleList([
|
245 |
+
BasicTransformerBlock(
|
246 |
+
inner_dim,
|
247 |
+
n_heads,
|
248 |
+
d_head,
|
249 |
+
dropout=dropout,
|
250 |
+
context_dim=context_dim,
|
251 |
+
img_cross_attention=img_cross_attention,
|
252 |
+
disable_self_attn=disable_self_attn,
|
253 |
+
checkpoint=use_checkpoint) for d in range(depth)
|
254 |
+
])
|
255 |
+
if not use_linear:
|
256 |
+
self.proj_out = zero_module(nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0))
|
257 |
+
else:
|
258 |
+
self.proj_out = zero_module(nn.Linear(inner_dim, in_channels))
|
259 |
+
self.use_linear = use_linear
|
260 |
+
|
261 |
+
|
262 |
+
def forward(self, x, context=None):
|
263 |
+
b, c, h, w = x.shape
|
264 |
+
x_in = x
|
265 |
+
x = self.norm(x)
|
266 |
+
if not self.use_linear:
|
267 |
+
x = self.proj_in(x)
|
268 |
+
x = rearrange(x, 'b c h w -> b (h w) c').contiguous()
|
269 |
+
if self.use_linear:
|
270 |
+
x = self.proj_in(x)
|
271 |
+
for i, block in enumerate(self.transformer_blocks):
|
272 |
+
x = block(x, context=context)
|
273 |
+
if self.use_linear:
|
274 |
+
x = self.proj_out(x)
|
275 |
+
x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous()
|
276 |
+
if not self.use_linear:
|
277 |
+
x = self.proj_out(x)
|
278 |
+
return x + x_in
|
279 |
+
|
280 |
+
|
281 |
+
class TemporalTransformer(nn.Module):
|
282 |
+
"""
|
283 |
+
Transformer block for image-like data in temporal axis.
|
284 |
+
First, reshape to b, t, d.
|
285 |
+
Then apply standard transformer action.
|
286 |
+
Finally, reshape to image
|
287 |
+
"""
|
288 |
+
def __init__(self, in_channels, n_heads, d_head, depth=1, dropout=0., context_dim=None,
|
289 |
+
use_checkpoint=True, use_linear=False, only_self_att=True, causal_attention=False,
|
290 |
+
relative_position=False, temporal_length=None):
|
291 |
+
super().__init__()
|
292 |
+
self.only_self_att = only_self_att
|
293 |
+
self.relative_position = relative_position
|
294 |
+
self.causal_attention = causal_attention
|
295 |
+
self.in_channels = in_channels
|
296 |
+
inner_dim = n_heads * d_head
|
297 |
+
self.norm = torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
|
298 |
+
self.proj_in = nn.Conv1d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
|
299 |
+
if not use_linear:
|
300 |
+
self.proj_in = nn.Conv1d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
|
301 |
+
else:
|
302 |
+
self.proj_in = nn.Linear(in_channels, inner_dim)
|
303 |
+
|
304 |
+
if relative_position:
|
305 |
+
assert(temporal_length is not None)
|
306 |
+
attention_cls = partial(CrossAttention, relative_position=True, temporal_length=temporal_length)
|
307 |
+
else:
|
308 |
+
attention_cls = None
|
309 |
+
if self.causal_attention:
|
310 |
+
assert(temporal_length is not None)
|
311 |
+
self.mask = torch.tril(torch.ones([1, temporal_length, temporal_length]))
|
312 |
+
|
313 |
+
if self.only_self_att:
|
314 |
+
context_dim = None
|
315 |
+
self.transformer_blocks = nn.ModuleList([
|
316 |
+
BasicTransformerBlock(
|
317 |
+
inner_dim,
|
318 |
+
n_heads,
|
319 |
+
d_head,
|
320 |
+
dropout=dropout,
|
321 |
+
context_dim=context_dim,
|
322 |
+
attention_cls=attention_cls,
|
323 |
+
checkpoint=use_checkpoint) for d in range(depth)
|
324 |
+
])
|
325 |
+
if not use_linear:
|
326 |
+
self.proj_out = zero_module(nn.Conv1d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0))
|
327 |
+
else:
|
328 |
+
self.proj_out = zero_module(nn.Linear(inner_dim, in_channels))
|
329 |
+
self.use_linear = use_linear
|
330 |
+
|
331 |
+
def forward(self, x, context=None):
|
332 |
+
b, c, t, h, w = x.shape
|
333 |
+
x_in = x
|
334 |
+
x = self.norm(x)
|
335 |
+
x = rearrange(x, 'b c t h w -> (b h w) c t').contiguous()
|
336 |
+
if not self.use_linear:
|
337 |
+
x = self.proj_in(x)
|
338 |
+
x = rearrange(x, 'bhw c t -> bhw t c').contiguous()
|
339 |
+
if self.use_linear:
|
340 |
+
x = self.proj_in(x)
|
341 |
+
|
342 |
+
if self.causal_attention:
|
343 |
+
mask = self.mask.to(x.device)
|
344 |
+
mask = repeat(mask, 'l i j -> (l bhw) i j', bhw=b*h*w)
|
345 |
+
else:
|
346 |
+
mask = None
|
347 |
+
|
348 |
+
if self.only_self_att:
|
349 |
+
## note: if no context is given, cross-attention defaults to self-attention
|
350 |
+
for i, block in enumerate(self.transformer_blocks):
|
351 |
+
x = block(x, mask=mask)
|
352 |
+
x = rearrange(x, '(b hw) t c -> b hw t c', b=b).contiguous()
|
353 |
+
else:
|
354 |
+
x = rearrange(x, '(b hw) t c -> b hw t c', b=b).contiguous()
|
355 |
+
context = rearrange(context, '(b t) l con -> b t l con', t=t).contiguous()
|
356 |
+
for i, block in enumerate(self.transformer_blocks):
|
357 |
+
# calculate each batch one by one (since number in shape could not greater then 65,535 for some package)
|
358 |
+
for j in range(b):
|
359 |
+
context_j = repeat(
|
360 |
+
context[j],
|
361 |
+
't l con -> (t r) l con', r=(h * w) // t, t=t).contiguous()
|
362 |
+
## note: causal mask will not applied in cross-attention case
|
363 |
+
x[j] = block(x[j], context=context_j)
|
364 |
+
|
365 |
+
if self.use_linear:
|
366 |
+
x = self.proj_out(x)
|
367 |
+
x = rearrange(x, 'b (h w) t c -> b c t h w', h=h, w=w).contiguous()
|
368 |
+
if not self.use_linear:
|
369 |
+
x = rearrange(x, 'b hw t c -> (b hw) c t').contiguous()
|
370 |
+
x = self.proj_out(x)
|
371 |
+
x = rearrange(x, '(b h w) c t -> b c t h w', b=b, h=h, w=w).contiguous()
|
372 |
+
|
373 |
+
return x + x_in
|
374 |
+
|
375 |
+
|
376 |
+
class GEGLU(nn.Module):
|
377 |
+
def __init__(self, dim_in, dim_out):
|
378 |
+
super().__init__()
|
379 |
+
self.proj = nn.Linear(dim_in, dim_out * 2)
|
380 |
+
|
381 |
+
def forward(self, x):
|
382 |
+
x, gate = self.proj(x).chunk(2, dim=-1)
|
383 |
+
return x * F.gelu(gate)
|
384 |
+
|
385 |
+
|
386 |
+
class FeedForward(nn.Module):
|
387 |
+
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
|
388 |
+
super().__init__()
|
389 |
+
inner_dim = int(dim * mult)
|
390 |
+
dim_out = default(dim_out, dim)
|
391 |
+
project_in = nn.Sequential(
|
392 |
+
nn.Linear(dim, inner_dim),
|
393 |
+
nn.GELU()
|
394 |
+
) if not glu else GEGLU(dim, inner_dim)
|
395 |
+
|
396 |
+
self.net = nn.Sequential(
|
397 |
+
project_in,
|
398 |
+
nn.Dropout(dropout),
|
399 |
+
nn.Linear(inner_dim, dim_out)
|
400 |
+
)
|
401 |
+
|
402 |
+
def forward(self, x):
|
403 |
+
return self.net(x)
|
404 |
+
|
405 |
+
|
406 |
+
class LinearAttention(nn.Module):
|
407 |
+
def __init__(self, dim, heads=4, dim_head=32):
|
408 |
+
super().__init__()
|
409 |
+
self.heads = heads
|
410 |
+
hidden_dim = dim_head * heads
|
411 |
+
self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias = False)
|
412 |
+
self.to_out = nn.Conv2d(hidden_dim, dim, 1)
|
413 |
+
|
414 |
+
def forward(self, x):
|
415 |
+
b, c, h, w = x.shape
|
416 |
+
qkv = self.to_qkv(x)
|
417 |
+
q, k, v = rearrange(qkv, 'b (qkv heads c) h w -> qkv b heads c (h w)', heads = self.heads, qkv=3)
|
418 |
+
k = k.softmax(dim=-1)
|
419 |
+
context = torch.einsum('bhdn,bhen->bhde', k, v)
|
420 |
+
out = torch.einsum('bhde,bhdn->bhen', context, q)
|
421 |
+
out = rearrange(out, 'b heads c (h w) -> b (heads c) h w', heads=self.heads, h=h, w=w)
|
422 |
+
return self.to_out(out)
|
423 |
+
|
424 |
+
|
425 |
+
class SpatialSelfAttention(nn.Module):
|
426 |
+
def __init__(self, in_channels):
|
427 |
+
super().__init__()
|
428 |
+
self.in_channels = in_channels
|
429 |
+
|
430 |
+
self.norm = torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
|
431 |
+
self.q = torch.nn.Conv2d(in_channels,
|
432 |
+
in_channels,
|
433 |
+
kernel_size=1,
|
434 |
+
stride=1,
|
435 |
+
padding=0)
|
436 |
+
self.k = torch.nn.Conv2d(in_channels,
|
437 |
+
in_channels,
|
438 |
+
kernel_size=1,
|
439 |
+
stride=1,
|
440 |
+
padding=0)
|
441 |
+
self.v = torch.nn.Conv2d(in_channels,
|
442 |
+
in_channels,
|
443 |
+
kernel_size=1,
|
444 |
+
stride=1,
|
445 |
+
padding=0)
|
446 |
+
self.proj_out = torch.nn.Conv2d(in_channels,
|
447 |
+
in_channels,
|
448 |
+
kernel_size=1,
|
449 |
+
stride=1,
|
450 |
+
padding=0)
|
451 |
+
|
452 |
+
def forward(self, x):
|
453 |
+
h_ = x
|
454 |
+
h_ = self.norm(h_)
|
455 |
+
q = self.q(h_)
|
456 |
+
k = self.k(h_)
|
457 |
+
v = self.v(h_)
|
458 |
+
|
459 |
+
# compute attention
|
460 |
+
b,c,h,w = q.shape
|
461 |
+
q = rearrange(q, 'b c h w -> b (h w) c')
|
462 |
+
k = rearrange(k, 'b c h w -> b c (h w)')
|
463 |
+
w_ = torch.einsum('bij,bjk->bik', q, k)
|
464 |
+
|
465 |
+
w_ = w_ * (int(c)**(-0.5))
|
466 |
+
w_ = torch.nn.functional.softmax(w_, dim=2)
|
467 |
+
|
468 |
+
# attend to values
|
469 |
+
v = rearrange(v, 'b c h w -> b c (h w)')
|
470 |
+
w_ = rearrange(w_, 'b i j -> b j i')
|
471 |
+
h_ = torch.einsum('bij,bjk->bik', v, w_)
|
472 |
+
h_ = rearrange(h_, 'b c (h w) -> b c h w', h=h)
|
473 |
+
h_ = self.proj_out(h_)
|
474 |
+
|
475 |
+
return x+h_
|
lvdm/modules/encoders/condition.py
ADDED
@@ -0,0 +1,392 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from torch.utils.checkpoint import checkpoint
|
4 |
+
import kornia
|
5 |
+
import open_clip
|
6 |
+
from transformers import T5Tokenizer, T5EncoderModel, CLIPTokenizer, CLIPTextModel
|
7 |
+
from lvdm.common import autocast
|
8 |
+
from utils.utils import count_params
|
9 |
+
|
10 |
+
class AbstractEncoder(nn.Module):
|
11 |
+
def __init__(self):
|
12 |
+
super().__init__()
|
13 |
+
|
14 |
+
def encode(self, *args, **kwargs):
|
15 |
+
raise NotImplementedError
|
16 |
+
|
17 |
+
|
18 |
+
class IdentityEncoder(AbstractEncoder):
|
19 |
+
|
20 |
+
def encode(self, x):
|
21 |
+
return x
|
22 |
+
|
23 |
+
|
24 |
+
class ClassEmbedder(nn.Module):
|
25 |
+
def __init__(self, embed_dim, n_classes=1000, key='class', ucg_rate=0.1):
|
26 |
+
super().__init__()
|
27 |
+
self.key = key
|
28 |
+
self.embedding = nn.Embedding(n_classes, embed_dim)
|
29 |
+
self.n_classes = n_classes
|
30 |
+
self.ucg_rate = ucg_rate
|
31 |
+
|
32 |
+
def forward(self, batch, key=None, disable_dropout=False):
|
33 |
+
if key is None:
|
34 |
+
key = self.key
|
35 |
+
# this is for use in crossattn
|
36 |
+
c = batch[key][:, None]
|
37 |
+
if self.ucg_rate > 0. and not disable_dropout:
|
38 |
+
mask = 1. - torch.bernoulli(torch.ones_like(c) * self.ucg_rate)
|
39 |
+
c = mask * c + (1 - mask) * torch.ones_like(c) * (self.n_classes - 1)
|
40 |
+
c = c.long()
|
41 |
+
c = self.embedding(c)
|
42 |
+
return c
|
43 |
+
|
44 |
+
def get_unconditional_conditioning(self, bs, device="cuda"):
|
45 |
+
uc_class = self.n_classes - 1 # 1000 classes --> 0 ... 999, one extra class for ucg (class 1000)
|
46 |
+
uc = torch.ones((bs,), device=device) * uc_class
|
47 |
+
uc = {self.key: uc}
|
48 |
+
return uc
|
49 |
+
|
50 |
+
|
51 |
+
def disabled_train(self, mode=True):
|
52 |
+
"""Overwrite model.train with this function to make sure train/eval mode
|
53 |
+
does not change anymore."""
|
54 |
+
return self
|
55 |
+
|
56 |
+
|
57 |
+
class FrozenT5Embedder(AbstractEncoder):
|
58 |
+
"""Uses the T5 transformer encoder for text"""
|
59 |
+
|
60 |
+
def __init__(self, version="google/t5-v1_1-large", device="cuda", max_length=77,
|
61 |
+
freeze=True): # others are google/t5-v1_1-xl and google/t5-v1_1-xxl
|
62 |
+
super().__init__()
|
63 |
+
self.tokenizer = T5Tokenizer.from_pretrained(version)
|
64 |
+
self.transformer = T5EncoderModel.from_pretrained(version)
|
65 |
+
self.device = device
|
66 |
+
self.max_length = max_length # TODO: typical value?
|
67 |
+
if freeze:
|
68 |
+
self.freeze()
|
69 |
+
|
70 |
+
def freeze(self):
|
71 |
+
self.transformer = self.transformer.eval()
|
72 |
+
# self.train = disabled_train
|
73 |
+
for param in self.parameters():
|
74 |
+
param.requires_grad = False
|
75 |
+
|
76 |
+
def forward(self, text):
|
77 |
+
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
|
78 |
+
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
79 |
+
tokens = batch_encoding["input_ids"].to(self.device)
|
80 |
+
outputs = self.transformer(input_ids=tokens)
|
81 |
+
|
82 |
+
z = outputs.last_hidden_state
|
83 |
+
return z
|
84 |
+
|
85 |
+
def encode(self, text):
|
86 |
+
return self(text)
|
87 |
+
|
88 |
+
|
89 |
+
class FrozenCLIPEmbedder(AbstractEncoder):
|
90 |
+
"""Uses the CLIP transformer encoder for text (from huggingface)"""
|
91 |
+
LAYERS = [
|
92 |
+
"last",
|
93 |
+
"pooled",
|
94 |
+
"hidden"
|
95 |
+
]
|
96 |
+
|
97 |
+
def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77,
|
98 |
+
freeze=True, layer="last", layer_idx=None): # clip-vit-base-patch32
|
99 |
+
super().__init__()
|
100 |
+
assert layer in self.LAYERS
|
101 |
+
self.tokenizer = CLIPTokenizer.from_pretrained(version)
|
102 |
+
self.transformer = CLIPTextModel.from_pretrained(version)
|
103 |
+
self.device = device
|
104 |
+
self.max_length = max_length
|
105 |
+
if freeze:
|
106 |
+
self.freeze()
|
107 |
+
self.layer = layer
|
108 |
+
self.layer_idx = layer_idx
|
109 |
+
if layer == "hidden":
|
110 |
+
assert layer_idx is not None
|
111 |
+
assert 0 <= abs(layer_idx) <= 12
|
112 |
+
|
113 |
+
def freeze(self):
|
114 |
+
self.transformer = self.transformer.eval()
|
115 |
+
# self.train = disabled_train
|
116 |
+
for param in self.parameters():
|
117 |
+
param.requires_grad = False
|
118 |
+
|
119 |
+
def forward(self, text):
|
120 |
+
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
|
121 |
+
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
122 |
+
tokens = batch_encoding["input_ids"].to(self.device)
|
123 |
+
outputs = self.transformer(input_ids=tokens, output_hidden_states=self.layer == "hidden")
|
124 |
+
if self.layer == "last":
|
125 |
+
z = outputs.last_hidden_state
|
126 |
+
elif self.layer == "pooled":
|
127 |
+
z = outputs.pooler_output[:, None, :]
|
128 |
+
else:
|
129 |
+
z = outputs.hidden_states[self.layer_idx]
|
130 |
+
return z
|
131 |
+
|
132 |
+
def encode(self, text):
|
133 |
+
return self(text)
|
134 |
+
|
135 |
+
|
136 |
+
class ClipImageEmbedder(nn.Module):
|
137 |
+
def __init__(
|
138 |
+
self,
|
139 |
+
model,
|
140 |
+
jit=False,
|
141 |
+
device='cuda' if torch.cuda.is_available() else 'cpu',
|
142 |
+
antialias=True,
|
143 |
+
ucg_rate=0.
|
144 |
+
):
|
145 |
+
super().__init__()
|
146 |
+
from clip import load as load_clip
|
147 |
+
self.model, _ = load_clip(name=model, device=device, jit=jit)
|
148 |
+
|
149 |
+
self.antialias = antialias
|
150 |
+
|
151 |
+
self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False)
|
152 |
+
self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False)
|
153 |
+
self.ucg_rate = ucg_rate
|
154 |
+
|
155 |
+
def preprocess(self, x):
|
156 |
+
# normalize to [0,1]
|
157 |
+
x = kornia.geometry.resize(x, (224, 224),
|
158 |
+
interpolation='bicubic', align_corners=True,
|
159 |
+
antialias=self.antialias)
|
160 |
+
x = (x + 1.) / 2.
|
161 |
+
# re-normalize according to clip
|
162 |
+
x = kornia.enhance.normalize(x, self.mean, self.std)
|
163 |
+
return x
|
164 |
+
|
165 |
+
def forward(self, x, no_dropout=False):
|
166 |
+
# x is assumed to be in range [-1,1]
|
167 |
+
out = self.model.encode_image(self.preprocess(x))
|
168 |
+
out = out.to(x.dtype)
|
169 |
+
if self.ucg_rate > 0. and not no_dropout:
|
170 |
+
out = torch.bernoulli((1. - self.ucg_rate) * torch.ones(out.shape[0], device=out.device))[:, None] * out
|
171 |
+
return out
|
172 |
+
|
173 |
+
|
174 |
+
class FrozenOpenCLIPEmbedder(AbstractEncoder):
|
175 |
+
"""
|
176 |
+
Uses the OpenCLIP transformer encoder for text
|
177 |
+
"""
|
178 |
+
LAYERS = [
|
179 |
+
# "pooled",
|
180 |
+
"last",
|
181 |
+
"penultimate"
|
182 |
+
]
|
183 |
+
|
184 |
+
def __init__(self, arch="ViT-H-14", version="laion2b_s32b_b79k", device="cuda", max_length=77,
|
185 |
+
freeze=True, layer="last"):
|
186 |
+
super().__init__()
|
187 |
+
assert layer in self.LAYERS
|
188 |
+
model, _, _ = open_clip.create_model_and_transforms(arch, device=torch.device('cpu'))
|
189 |
+
del model.visual
|
190 |
+
self.model = model
|
191 |
+
|
192 |
+
self.device = device
|
193 |
+
self.max_length = max_length
|
194 |
+
if freeze:
|
195 |
+
self.freeze()
|
196 |
+
self.layer = layer
|
197 |
+
if self.layer == "last":
|
198 |
+
self.layer_idx = 0
|
199 |
+
elif self.layer == "penultimate":
|
200 |
+
self.layer_idx = 1
|
201 |
+
else:
|
202 |
+
raise NotImplementedError()
|
203 |
+
|
204 |
+
def freeze(self):
|
205 |
+
self.model = self.model.eval()
|
206 |
+
for param in self.parameters():
|
207 |
+
param.requires_grad = False
|
208 |
+
|
209 |
+
def forward(self, text):
|
210 |
+
self.device = self.model.positional_embedding.device
|
211 |
+
tokens = open_clip.tokenize(text)
|
212 |
+
z = self.encode_with_transformer(tokens.to(self.device))
|
213 |
+
return z
|
214 |
+
|
215 |
+
def encode_with_transformer(self, text):
|
216 |
+
x = self.model.token_embedding(text) # [batch_size, n_ctx, d_model]
|
217 |
+
x = x + self.model.positional_embedding
|
218 |
+
x = x.permute(1, 0, 2) # NLD -> LND
|
219 |
+
x = self.text_transformer_forward(x, attn_mask=self.model.attn_mask)
|
220 |
+
x = x.permute(1, 0, 2) # LND -> NLD
|
221 |
+
x = self.model.ln_final(x)
|
222 |
+
return x
|
223 |
+
|
224 |
+
def text_transformer_forward(self, x: torch.Tensor, attn_mask=None):
|
225 |
+
for i, r in enumerate(self.model.transformer.resblocks):
|
226 |
+
if i == len(self.model.transformer.resblocks) - self.layer_idx:
|
227 |
+
break
|
228 |
+
if self.model.transformer.grad_checkpointing and not torch.jit.is_scripting():
|
229 |
+
x = checkpoint(r, x, attn_mask)
|
230 |
+
else:
|
231 |
+
x = r(x, attn_mask=attn_mask)
|
232 |
+
return x
|
233 |
+
|
234 |
+
def encode(self, text):
|
235 |
+
return self(text)
|
236 |
+
|
237 |
+
|
238 |
+
class FrozenOpenCLIPImageEmbedder(AbstractEncoder):
|
239 |
+
"""
|
240 |
+
Uses the OpenCLIP vision transformer encoder for images
|
241 |
+
"""
|
242 |
+
|
243 |
+
def __init__(self, arch="ViT-H-14", version="laion2b_s32b_b79k", device="cuda", max_length=77,
|
244 |
+
freeze=True, layer="pooled", antialias=True, ucg_rate=0.):
|
245 |
+
super().__init__()
|
246 |
+
model, _, _ = open_clip.create_model_and_transforms(arch, device=torch.device('cpu'),
|
247 |
+
pretrained=version, )
|
248 |
+
del model.transformer
|
249 |
+
self.model = model
|
250 |
+
|
251 |
+
self.device = device
|
252 |
+
self.max_length = max_length
|
253 |
+
if freeze:
|
254 |
+
self.freeze()
|
255 |
+
self.layer = layer
|
256 |
+
if self.layer == "penultimate":
|
257 |
+
raise NotImplementedError()
|
258 |
+
self.layer_idx = 1
|
259 |
+
|
260 |
+
self.antialias = antialias
|
261 |
+
|
262 |
+
self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False)
|
263 |
+
self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False)
|
264 |
+
self.ucg_rate = ucg_rate
|
265 |
+
|
266 |
+
def preprocess(self, x):
|
267 |
+
# normalize to [0,1]
|
268 |
+
x = kornia.geometry.resize(x, (224, 224),
|
269 |
+
interpolation='bicubic', align_corners=True,
|
270 |
+
antialias=self.antialias)
|
271 |
+
x = (x + 1.) / 2.
|
272 |
+
# renormalize according to clip
|
273 |
+
x = kornia.enhance.normalize(x, self.mean, self.std)
|
274 |
+
return x
|
275 |
+
|
276 |
+
def freeze(self):
|
277 |
+
self.model = self.model.eval()
|
278 |
+
for param in self.parameters():
|
279 |
+
param.requires_grad = False
|
280 |
+
|
281 |
+
@autocast
|
282 |
+
def forward(self, image, no_dropout=False):
|
283 |
+
z = self.encode_with_vision_transformer(image)
|
284 |
+
if self.ucg_rate > 0. and not no_dropout:
|
285 |
+
z = torch.bernoulli((1. - self.ucg_rate) * torch.ones(z.shape[0], device=z.device))[:, None] * z
|
286 |
+
return z
|
287 |
+
|
288 |
+
def encode_with_vision_transformer(self, img):
|
289 |
+
img = self.preprocess(img)
|
290 |
+
x = self.model.visual(img)
|
291 |
+
return x
|
292 |
+
|
293 |
+
def encode(self, text):
|
294 |
+
return self(text)
|
295 |
+
|
296 |
+
|
297 |
+
|
298 |
+
class FrozenOpenCLIPImageEmbedderV2(AbstractEncoder):
|
299 |
+
"""
|
300 |
+
Uses the OpenCLIP vision transformer encoder for images
|
301 |
+
"""
|
302 |
+
|
303 |
+
def __init__(self, arch="ViT-H-14", version="laion2b_s32b_b79k", device="cuda",
|
304 |
+
freeze=True, layer="pooled", antialias=True):
|
305 |
+
super().__init__()
|
306 |
+
model, _, _ = open_clip.create_model_and_transforms(arch, device=torch.device('cpu'),
|
307 |
+
pretrained=version, )
|
308 |
+
del model.transformer
|
309 |
+
self.model = model
|
310 |
+
self.device = device
|
311 |
+
|
312 |
+
if freeze:
|
313 |
+
self.freeze()
|
314 |
+
self.layer = layer
|
315 |
+
if self.layer == "penultimate":
|
316 |
+
raise NotImplementedError()
|
317 |
+
self.layer_idx = 1
|
318 |
+
|
319 |
+
self.antialias = antialias
|
320 |
+
self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False)
|
321 |
+
self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False)
|
322 |
+
|
323 |
+
|
324 |
+
def preprocess(self, x):
|
325 |
+
# normalize to [0,1]
|
326 |
+
x = kornia.geometry.resize(x, (224, 224),
|
327 |
+
interpolation='bicubic', align_corners=True,
|
328 |
+
antialias=self.antialias)
|
329 |
+
x = (x + 1.) / 2.
|
330 |
+
# renormalize according to clip
|
331 |
+
x = kornia.enhance.normalize(x, self.mean, self.std)
|
332 |
+
return x
|
333 |
+
|
334 |
+
def freeze(self):
|
335 |
+
self.model = self.model.eval()
|
336 |
+
for param in self.model.parameters():
|
337 |
+
param.requires_grad = False
|
338 |
+
|
339 |
+
def forward(self, image, no_dropout=False):
|
340 |
+
## image: b c h w
|
341 |
+
z = self.encode_with_vision_transformer(image)
|
342 |
+
return z
|
343 |
+
|
344 |
+
def encode_with_vision_transformer(self, x):
|
345 |
+
x = self.preprocess(x)
|
346 |
+
|
347 |
+
# to patches - whether to use dual patchnorm - https://arxiv.org/abs/2302.01327v1
|
348 |
+
if self.model.visual.input_patchnorm:
|
349 |
+
# einops - rearrange(x, 'b c (h p1) (w p2) -> b (h w) (c p1 p2)')
|
350 |
+
x = x.reshape(x.shape[0], x.shape[1], self.model.visual.grid_size[0], self.model.visual.patch_size[0], self.model.visual.grid_size[1], self.model.visual.patch_size[1])
|
351 |
+
x = x.permute(0, 2, 4, 1, 3, 5)
|
352 |
+
x = x.reshape(x.shape[0], self.model.visual.grid_size[0] * self.model.visual.grid_size[1], -1)
|
353 |
+
x = self.model.visual.patchnorm_pre_ln(x)
|
354 |
+
x = self.model.visual.conv1(x)
|
355 |
+
else:
|
356 |
+
x = self.model.visual.conv1(x) # shape = [*, width, grid, grid]
|
357 |
+
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
|
358 |
+
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
|
359 |
+
|
360 |
+
# class embeddings and positional embeddings
|
361 |
+
x = torch.cat(
|
362 |
+
[self.model.visual.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device),
|
363 |
+
x], dim=1) # shape = [*, grid ** 2 + 1, width]
|
364 |
+
x = x + self.model.visual.positional_embedding.to(x.dtype)
|
365 |
+
|
366 |
+
# a patch_dropout of 0. would mean it is disabled and this function would do nothing but return what was passed in
|
367 |
+
x = self.model.visual.patch_dropout(x)
|
368 |
+
x = self.model.visual.ln_pre(x)
|
369 |
+
|
370 |
+
x = x.permute(1, 0, 2) # NLD -> LND
|
371 |
+
x = self.model.visual.transformer(x)
|
372 |
+
x = x.permute(1, 0, 2) # LND -> NLD
|
373 |
+
|
374 |
+
return x
|
375 |
+
|
376 |
+
|
377 |
+
class FrozenCLIPT5Encoder(AbstractEncoder):
|
378 |
+
def __init__(self, clip_version="openai/clip-vit-large-patch14", t5_version="google/t5-v1_1-xl", device="cuda",
|
379 |
+
clip_max_length=77, t5_max_length=77):
|
380 |
+
super().__init__()
|
381 |
+
self.clip_encoder = FrozenCLIPEmbedder(clip_version, device, max_length=clip_max_length)
|
382 |
+
self.t5_encoder = FrozenT5Embedder(t5_version, device, max_length=t5_max_length)
|
383 |
+
print(f"{self.clip_encoder.__class__.__name__} has {count_params(self.clip_encoder) * 1.e-6:.2f} M parameters, "
|
384 |
+
f"{self.t5_encoder.__class__.__name__} comes with {count_params(self.t5_encoder) * 1.e-6:.2f} M params.")
|
385 |
+
|
386 |
+
def encode(self, text):
|
387 |
+
return self(text)
|
388 |
+
|
389 |
+
def forward(self, text):
|
390 |
+
clip_z = self.clip_encoder.encode(text)
|
391 |
+
t5_z = self.t5_encoder.encode(text)
|
392 |
+
return [clip_z, t5_z]
|
lvdm/modules/encoders/ip_resampler.py
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# modified from https://github.com/mlfoundations/open_flamingo/blob/main/open_flamingo/src/helpers.py
|
2 |
+
import math
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
|
6 |
+
|
7 |
+
class ImageProjModel(nn.Module):
|
8 |
+
"""Projection Model"""
|
9 |
+
def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024, clip_extra_context_tokens=4):
|
10 |
+
super().__init__()
|
11 |
+
self.cross_attention_dim = cross_attention_dim
|
12 |
+
self.clip_extra_context_tokens = clip_extra_context_tokens
|
13 |
+
self.proj = nn.Linear(clip_embeddings_dim, self.clip_extra_context_tokens * cross_attention_dim)
|
14 |
+
self.norm = nn.LayerNorm(cross_attention_dim)
|
15 |
+
|
16 |
+
def forward(self, image_embeds):
|
17 |
+
#embeds = image_embeds
|
18 |
+
embeds = image_embeds.type(list(self.proj.parameters())[0].dtype)
|
19 |
+
clip_extra_context_tokens = self.proj(embeds).reshape(-1, self.clip_extra_context_tokens, self.cross_attention_dim)
|
20 |
+
clip_extra_context_tokens = self.norm(clip_extra_context_tokens)
|
21 |
+
return clip_extra_context_tokens
|
22 |
+
|
23 |
+
# FFN
|
24 |
+
def FeedForward(dim, mult=4):
|
25 |
+
inner_dim = int(dim * mult)
|
26 |
+
return nn.Sequential(
|
27 |
+
nn.LayerNorm(dim),
|
28 |
+
nn.Linear(dim, inner_dim, bias=False),
|
29 |
+
nn.GELU(),
|
30 |
+
nn.Linear(inner_dim, dim, bias=False),
|
31 |
+
)
|
32 |
+
|
33 |
+
|
34 |
+
def reshape_tensor(x, heads):
|
35 |
+
bs, length, width = x.shape
|
36 |
+
#(bs, length, width) --> (bs, length, n_heads, dim_per_head)
|
37 |
+
x = x.view(bs, length, heads, -1)
|
38 |
+
# (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head)
|
39 |
+
x = x.transpose(1, 2)
|
40 |
+
# (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head)
|
41 |
+
x = x.reshape(bs, heads, length, -1)
|
42 |
+
return x
|
43 |
+
|
44 |
+
|
45 |
+
class PerceiverAttention(nn.Module):
|
46 |
+
def __init__(self, *, dim, dim_head=64, heads=8):
|
47 |
+
super().__init__()
|
48 |
+
self.scale = dim_head**-0.5
|
49 |
+
self.dim_head = dim_head
|
50 |
+
self.heads = heads
|
51 |
+
inner_dim = dim_head * heads
|
52 |
+
|
53 |
+
self.norm1 = nn.LayerNorm(dim)
|
54 |
+
self.norm2 = nn.LayerNorm(dim)
|
55 |
+
|
56 |
+
self.to_q = nn.Linear(dim, inner_dim, bias=False)
|
57 |
+
self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
|
58 |
+
self.to_out = nn.Linear(inner_dim, dim, bias=False)
|
59 |
+
|
60 |
+
|
61 |
+
def forward(self, x, latents):
|
62 |
+
"""
|
63 |
+
Args:
|
64 |
+
x (torch.Tensor): image features
|
65 |
+
shape (b, n1, D)
|
66 |
+
latent (torch.Tensor): latent features
|
67 |
+
shape (b, n2, D)
|
68 |
+
"""
|
69 |
+
x = self.norm1(x)
|
70 |
+
latents = self.norm2(latents)
|
71 |
+
|
72 |
+
b, l, _ = latents.shape
|
73 |
+
|
74 |
+
q = self.to_q(latents)
|
75 |
+
kv_input = torch.cat((x, latents), dim=-2)
|
76 |
+
k, v = self.to_kv(kv_input).chunk(2, dim=-1)
|
77 |
+
|
78 |
+
q = reshape_tensor(q, self.heads)
|
79 |
+
k = reshape_tensor(k, self.heads)
|
80 |
+
v = reshape_tensor(v, self.heads)
|
81 |
+
|
82 |
+
# attention
|
83 |
+
scale = 1 / math.sqrt(math.sqrt(self.dim_head))
|
84 |
+
weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards
|
85 |
+
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
|
86 |
+
out = weight @ v
|
87 |
+
|
88 |
+
out = out.permute(0, 2, 1, 3).reshape(b, l, -1)
|
89 |
+
|
90 |
+
return self.to_out(out)
|
91 |
+
|
92 |
+
|
93 |
+
class Resampler(nn.Module):
|
94 |
+
def __init__(
|
95 |
+
self,
|
96 |
+
dim=1024,
|
97 |
+
depth=8,
|
98 |
+
dim_head=64,
|
99 |
+
heads=16,
|
100 |
+
num_queries=8,
|
101 |
+
embedding_dim=768,
|
102 |
+
output_dim=1024,
|
103 |
+
ff_mult=4,
|
104 |
+
):
|
105 |
+
super().__init__()
|
106 |
+
|
107 |
+
self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim**0.5)
|
108 |
+
|
109 |
+
self.proj_in = nn.Linear(embedding_dim, dim)
|
110 |
+
|
111 |
+
self.proj_out = nn.Linear(dim, output_dim)
|
112 |
+
self.norm_out = nn.LayerNorm(output_dim)
|
113 |
+
|
114 |
+
self.layers = nn.ModuleList([])
|
115 |
+
for _ in range(depth):
|
116 |
+
self.layers.append(
|
117 |
+
nn.ModuleList(
|
118 |
+
[
|
119 |
+
PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
|
120 |
+
FeedForward(dim=dim, mult=ff_mult),
|
121 |
+
]
|
122 |
+
)
|
123 |
+
)
|
124 |
+
|
125 |
+
def forward(self, x):
|
126 |
+
|
127 |
+
latents = self.latents.repeat(x.size(0), 1, 1)
|
128 |
+
|
129 |
+
x = self.proj_in(x)
|
130 |
+
|
131 |
+
for attn, ff in self.layers:
|
132 |
+
latents = attn(x, latents) + latents
|
133 |
+
latents = ff(latents) + latents
|
134 |
+
|
135 |
+
latents = self.proj_out(latents)
|
136 |
+
return self.norm_out(latents)
|
lvdm/{models/modules/autoencoder_modules.py → modules/networks/ae_modules.py}
RENAMED
@@ -1,30 +1,11 @@
|
|
|
|
1 |
import math
|
2 |
-
|
3 |
import torch
|
4 |
import numpy as np
|
5 |
-
|
6 |
from einops import rearrange
|
7 |
-
|
8 |
-
|
9 |
-
def get_timestep_embedding(timesteps, embedding_dim):
|
10 |
-
"""
|
11 |
-
This matches the implementation in Denoising Diffusion Probabilistic Models:
|
12 |
-
From Fairseq.
|
13 |
-
Build sinusoidal embeddings.
|
14 |
-
This matches the implementation in tensor2tensor, but differs slightly
|
15 |
-
from the description in Section 3.5 of "Attention Is All You Need".
|
16 |
-
"""
|
17 |
-
assert len(timesteps.shape) == 1
|
18 |
-
|
19 |
-
half_dim = embedding_dim // 2
|
20 |
-
emb = math.log(10000) / (half_dim - 1)
|
21 |
-
emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)
|
22 |
-
emb = emb.to(device=timesteps.device)
|
23 |
-
emb = timesteps.float()[:, None] * emb[None, :]
|
24 |
-
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
25 |
-
if embedding_dim % 2 == 1: # zero pad
|
26 |
-
emb = torch.nn.functional.pad(emb, (0,1,0,0))
|
27 |
-
return emb
|
28 |
|
29 |
def nonlinearity(x):
|
30 |
# swish
|
@@ -36,25 +17,6 @@ def Normalize(in_channels, num_groups=32):
|
|
36 |
|
37 |
|
38 |
|
39 |
-
class LinearAttention(nn.Module):
|
40 |
-
def __init__(self, dim, heads=4, dim_head=32):
|
41 |
-
super().__init__()
|
42 |
-
self.heads = heads
|
43 |
-
hidden_dim = dim_head * heads
|
44 |
-
self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias = False)
|
45 |
-
self.to_out = nn.Conv2d(hidden_dim, dim, 1)
|
46 |
-
|
47 |
-
def forward(self, x):
|
48 |
-
b, c, h, w = x.shape
|
49 |
-
qkv = self.to_qkv(x)
|
50 |
-
q, k, v = rearrange(qkv, 'b (qkv heads c) h w -> qkv b heads c (h w)', heads = self.heads, qkv=3)
|
51 |
-
k = k.softmax(dim=-1)
|
52 |
-
context = torch.einsum('bhdn,bhen->bhde', k, v)
|
53 |
-
out = torch.einsum('bhde,bhdn->bhen', context, q)
|
54 |
-
out = rearrange(out, 'b heads c (h w) -> b (heads c) h w', heads=self.heads, h=h, w=w)
|
55 |
-
return self.to_out(out)
|
56 |
-
|
57 |
-
|
58 |
class LinAttnBlock(LinearAttention):
|
59 |
"""to match AttnBlock usage"""
|
60 |
def __init__(self, in_channels):
|
@@ -115,10 +77,9 @@ class AttnBlock(nn.Module):
|
|
115 |
|
116 |
return x+h_
|
117 |
|
118 |
-
|
119 |
def make_attn(in_channels, attn_type="vanilla"):
|
120 |
assert attn_type in ["vanilla", "linear", "none"], f'attn_type {attn_type} unknown'
|
121 |
-
print(f"making attention of type '{attn_type}' with {in_channels} in_channels")
|
122 |
if attn_type == "vanilla":
|
123 |
return AttnBlock(in_channels)
|
124 |
elif attn_type == "none":
|
@@ -165,6 +126,27 @@ class Upsample(nn.Module):
|
|
165 |
x = self.conv(x)
|
166 |
return x
|
167 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
|
169 |
class ResnetBlock(nn.Module):
|
170 |
def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False,
|
@@ -502,7 +484,7 @@ class Decoder(nn.Module):
|
|
502 |
block_in = ch*ch_mult[self.num_resolutions-1]
|
503 |
curr_res = resolution // 2**(self.num_resolutions-1)
|
504 |
self.z_shape = (1,z_channels,curr_res,curr_res)
|
505 |
-
print("
|
506 |
self.z_shape, np.prod(self.z_shape)))
|
507 |
|
508 |
# z to block_in
|
@@ -594,3 +576,270 @@ class Decoder(nn.Module):
|
|
594 |
if self.tanh_out:
|
595 |
h = torch.tanh(h)
|
596 |
return h
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# pytorch_diffusion + derived encoder decoder
|
2 |
import math
|
|
|
3 |
import torch
|
4 |
import numpy as np
|
5 |
+
import torch.nn as nn
|
6 |
from einops import rearrange
|
7 |
+
from utils.utils import instantiate_from_config
|
8 |
+
from lvdm.modules.attention import LinearAttention
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
def nonlinearity(x):
|
11 |
# swish
|
|
|
17 |
|
18 |
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
class LinAttnBlock(LinearAttention):
|
21 |
"""to match AttnBlock usage"""
|
22 |
def __init__(self, in_channels):
|
|
|
77 |
|
78 |
return x+h_
|
79 |
|
|
|
80 |
def make_attn(in_channels, attn_type="vanilla"):
|
81 |
assert attn_type in ["vanilla", "linear", "none"], f'attn_type {attn_type} unknown'
|
82 |
+
#print(f"making attention of type '{attn_type}' with {in_channels} in_channels")
|
83 |
if attn_type == "vanilla":
|
84 |
return AttnBlock(in_channels)
|
85 |
elif attn_type == "none":
|
|
|
126 |
x = self.conv(x)
|
127 |
return x
|
128 |
|
129 |
+
def get_timestep_embedding(timesteps, embedding_dim):
|
130 |
+
"""
|
131 |
+
This matches the implementation in Denoising Diffusion Probabilistic Models:
|
132 |
+
From Fairseq.
|
133 |
+
Build sinusoidal embeddings.
|
134 |
+
This matches the implementation in tensor2tensor, but differs slightly
|
135 |
+
from the description in Section 3.5 of "Attention Is All You Need".
|
136 |
+
"""
|
137 |
+
assert len(timesteps.shape) == 1
|
138 |
+
|
139 |
+
half_dim = embedding_dim // 2
|
140 |
+
emb = math.log(10000) / (half_dim - 1)
|
141 |
+
emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)
|
142 |
+
emb = emb.to(device=timesteps.device)
|
143 |
+
emb = timesteps.float()[:, None] * emb[None, :]
|
144 |
+
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
145 |
+
if embedding_dim % 2 == 1: # zero pad
|
146 |
+
emb = torch.nn.functional.pad(emb, (0,1,0,0))
|
147 |
+
return emb
|
148 |
+
|
149 |
+
|
150 |
|
151 |
class ResnetBlock(nn.Module):
|
152 |
def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False,
|
|
|
484 |
block_in = ch*ch_mult[self.num_resolutions-1]
|
485 |
curr_res = resolution // 2**(self.num_resolutions-1)
|
486 |
self.z_shape = (1,z_channels,curr_res,curr_res)
|
487 |
+
print("AE working on z of shape {} = {} dimensions.".format(
|
488 |
self.z_shape, np.prod(self.z_shape)))
|
489 |
|
490 |
# z to block_in
|
|
|
576 |
if self.tanh_out:
|
577 |
h = torch.tanh(h)
|
578 |
return h
|
579 |
+
|
580 |
+
|
581 |
+
class SimpleDecoder(nn.Module):
|
582 |
+
def __init__(self, in_channels, out_channels, *args, **kwargs):
|
583 |
+
super().__init__()
|
584 |
+
self.model = nn.ModuleList([nn.Conv2d(in_channels, in_channels, 1),
|
585 |
+
ResnetBlock(in_channels=in_channels,
|
586 |
+
out_channels=2 * in_channels,
|
587 |
+
temb_channels=0, dropout=0.0),
|
588 |
+
ResnetBlock(in_channels=2 * in_channels,
|
589 |
+
out_channels=4 * in_channels,
|
590 |
+
temb_channels=0, dropout=0.0),
|
591 |
+
ResnetBlock(in_channels=4 * in_channels,
|
592 |
+
out_channels=2 * in_channels,
|
593 |
+
temb_channels=0, dropout=0.0),
|
594 |
+
nn.Conv2d(2*in_channels, in_channels, 1),
|
595 |
+
Upsample(in_channels, with_conv=True)])
|
596 |
+
# end
|
597 |
+
self.norm_out = Normalize(in_channels)
|
598 |
+
self.conv_out = torch.nn.Conv2d(in_channels,
|
599 |
+
out_channels,
|
600 |
+
kernel_size=3,
|
601 |
+
stride=1,
|
602 |
+
padding=1)
|
603 |
+
|
604 |
+
def forward(self, x):
|
605 |
+
for i, layer in enumerate(self.model):
|
606 |
+
if i in [1,2,3]:
|
607 |
+
x = layer(x, None)
|
608 |
+
else:
|
609 |
+
x = layer(x)
|
610 |
+
|
611 |
+
h = self.norm_out(x)
|
612 |
+
h = nonlinearity(h)
|
613 |
+
x = self.conv_out(h)
|
614 |
+
return x
|
615 |
+
|
616 |
+
|
617 |
+
class UpsampleDecoder(nn.Module):
|
618 |
+
def __init__(self, in_channels, out_channels, ch, num_res_blocks, resolution,
|
619 |
+
ch_mult=(2,2), dropout=0.0):
|
620 |
+
super().__init__()
|
621 |
+
# upsampling
|
622 |
+
self.temb_ch = 0
|
623 |
+
self.num_resolutions = len(ch_mult)
|
624 |
+
self.num_res_blocks = num_res_blocks
|
625 |
+
block_in = in_channels
|
626 |
+
curr_res = resolution // 2 ** (self.num_resolutions - 1)
|
627 |
+
self.res_blocks = nn.ModuleList()
|
628 |
+
self.upsample_blocks = nn.ModuleList()
|
629 |
+
for i_level in range(self.num_resolutions):
|
630 |
+
res_block = []
|
631 |
+
block_out = ch * ch_mult[i_level]
|
632 |
+
for i_block in range(self.num_res_blocks + 1):
|
633 |
+
res_block.append(ResnetBlock(in_channels=block_in,
|
634 |
+
out_channels=block_out,
|
635 |
+
temb_channels=self.temb_ch,
|
636 |
+
dropout=dropout))
|
637 |
+
block_in = block_out
|
638 |
+
self.res_blocks.append(nn.ModuleList(res_block))
|
639 |
+
if i_level != self.num_resolutions - 1:
|
640 |
+
self.upsample_blocks.append(Upsample(block_in, True))
|
641 |
+
curr_res = curr_res * 2
|
642 |
+
|
643 |
+
# end
|
644 |
+
self.norm_out = Normalize(block_in)
|
645 |
+
self.conv_out = torch.nn.Conv2d(block_in,
|
646 |
+
out_channels,
|
647 |
+
kernel_size=3,
|
648 |
+
stride=1,
|
649 |
+
padding=1)
|
650 |
+
|
651 |
+
def forward(self, x):
|
652 |
+
# upsampling
|
653 |
+
h = x
|
654 |
+
for k, i_level in enumerate(range(self.num_resolutions)):
|
655 |
+
for i_block in range(self.num_res_blocks + 1):
|
656 |
+
h = self.res_blocks[i_level][i_block](h, None)
|
657 |
+
if i_level != self.num_resolutions - 1:
|
658 |
+
h = self.upsample_blocks[k](h)
|
659 |
+
h = self.norm_out(h)
|
660 |
+
h = nonlinearity(h)
|
661 |
+
h = self.conv_out(h)
|
662 |
+
return h
|
663 |
+
|
664 |
+
|
665 |
+
class LatentRescaler(nn.Module):
|
666 |
+
def __init__(self, factor, in_channels, mid_channels, out_channels, depth=2):
|
667 |
+
super().__init__()
|
668 |
+
# residual block, interpolate, residual block
|
669 |
+
self.factor = factor
|
670 |
+
self.conv_in = nn.Conv2d(in_channels,
|
671 |
+
mid_channels,
|
672 |
+
kernel_size=3,
|
673 |
+
stride=1,
|
674 |
+
padding=1)
|
675 |
+
self.res_block1 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
|
676 |
+
out_channels=mid_channels,
|
677 |
+
temb_channels=0,
|
678 |
+
dropout=0.0) for _ in range(depth)])
|
679 |
+
self.attn = AttnBlock(mid_channels)
|
680 |
+
self.res_block2 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
|
681 |
+
out_channels=mid_channels,
|
682 |
+
temb_channels=0,
|
683 |
+
dropout=0.0) for _ in range(depth)])
|
684 |
+
|
685 |
+
self.conv_out = nn.Conv2d(mid_channels,
|
686 |
+
out_channels,
|
687 |
+
kernel_size=1,
|
688 |
+
)
|
689 |
+
|
690 |
+
def forward(self, x):
|
691 |
+
x = self.conv_in(x)
|
692 |
+
for block in self.res_block1:
|
693 |
+
x = block(x, None)
|
694 |
+
x = torch.nn.functional.interpolate(x, size=(int(round(x.shape[2]*self.factor)), int(round(x.shape[3]*self.factor))))
|
695 |
+
x = self.attn(x)
|
696 |
+
for block in self.res_block2:
|
697 |
+
x = block(x, None)
|
698 |
+
x = self.conv_out(x)
|
699 |
+
return x
|
700 |
+
|
701 |
+
|
702 |
+
class MergedRescaleEncoder(nn.Module):
|
703 |
+
def __init__(self, in_channels, ch, resolution, out_ch, num_res_blocks,
|
704 |
+
attn_resolutions, dropout=0.0, resamp_with_conv=True,
|
705 |
+
ch_mult=(1,2,4,8), rescale_factor=1.0, rescale_module_depth=1):
|
706 |
+
super().__init__()
|
707 |
+
intermediate_chn = ch * ch_mult[-1]
|
708 |
+
self.encoder = Encoder(in_channels=in_channels, num_res_blocks=num_res_blocks, ch=ch, ch_mult=ch_mult,
|
709 |
+
z_channels=intermediate_chn, double_z=False, resolution=resolution,
|
710 |
+
attn_resolutions=attn_resolutions, dropout=dropout, resamp_with_conv=resamp_with_conv,
|
711 |
+
out_ch=None)
|
712 |
+
self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=intermediate_chn,
|
713 |
+
mid_channels=intermediate_chn, out_channels=out_ch, depth=rescale_module_depth)
|
714 |
+
|
715 |
+
def forward(self, x):
|
716 |
+
x = self.encoder(x)
|
717 |
+
x = self.rescaler(x)
|
718 |
+
return x
|
719 |
+
|
720 |
+
|
721 |
+
class MergedRescaleDecoder(nn.Module):
|
722 |
+
def __init__(self, z_channels, out_ch, resolution, num_res_blocks, attn_resolutions, ch, ch_mult=(1,2,4,8),
|
723 |
+
dropout=0.0, resamp_with_conv=True, rescale_factor=1.0, rescale_module_depth=1):
|
724 |
+
super().__init__()
|
725 |
+
tmp_chn = z_channels*ch_mult[-1]
|
726 |
+
self.decoder = Decoder(out_ch=out_ch, z_channels=tmp_chn, attn_resolutions=attn_resolutions, dropout=dropout,
|
727 |
+
resamp_with_conv=resamp_with_conv, in_channels=None, num_res_blocks=num_res_blocks,
|
728 |
+
ch_mult=ch_mult, resolution=resolution, ch=ch)
|
729 |
+
self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=z_channels, mid_channels=tmp_chn,
|
730 |
+
out_channels=tmp_chn, depth=rescale_module_depth)
|
731 |
+
|
732 |
+
def forward(self, x):
|
733 |
+
x = self.rescaler(x)
|
734 |
+
x = self.decoder(x)
|
735 |
+
return x
|
736 |
+
|
737 |
+
|
738 |
+
class Upsampler(nn.Module):
|
739 |
+
def __init__(self, in_size, out_size, in_channels, out_channels, ch_mult=2):
|
740 |
+
super().__init__()
|
741 |
+
assert out_size >= in_size
|
742 |
+
num_blocks = int(np.log2(out_size//in_size))+1
|
743 |
+
factor_up = 1.+ (out_size % in_size)
|
744 |
+
print(f"Building {self.__class__.__name__} with in_size: {in_size} --> out_size {out_size} and factor {factor_up}")
|
745 |
+
self.rescaler = LatentRescaler(factor=factor_up, in_channels=in_channels, mid_channels=2*in_channels,
|
746 |
+
out_channels=in_channels)
|
747 |
+
self.decoder = Decoder(out_ch=out_channels, resolution=out_size, z_channels=in_channels, num_res_blocks=2,
|
748 |
+
attn_resolutions=[], in_channels=None, ch=in_channels,
|
749 |
+
ch_mult=[ch_mult for _ in range(num_blocks)])
|
750 |
+
|
751 |
+
def forward(self, x):
|
752 |
+
x = self.rescaler(x)
|
753 |
+
x = self.decoder(x)
|
754 |
+
return x
|
755 |
+
|
756 |
+
|
757 |
+
class Resize(nn.Module):
|
758 |
+
def __init__(self, in_channels=None, learned=False, mode="bilinear"):
|
759 |
+
super().__init__()
|
760 |
+
self.with_conv = learned
|
761 |
+
self.mode = mode
|
762 |
+
if self.with_conv:
|
763 |
+
print(f"Note: {self.__class__.__name} uses learned downsampling and will ignore the fixed {mode} mode")
|
764 |
+
raise NotImplementedError()
|
765 |
+
assert in_channels is not None
|
766 |
+
# no asymmetric padding in torch conv, must do it ourselves
|
767 |
+
self.conv = torch.nn.Conv2d(in_channels,
|
768 |
+
in_channels,
|
769 |
+
kernel_size=4,
|
770 |
+
stride=2,
|
771 |
+
padding=1)
|
772 |
+
|
773 |
+
def forward(self, x, scale_factor=1.0):
|
774 |
+
if scale_factor==1.0:
|
775 |
+
return x
|
776 |
+
else:
|
777 |
+
x = torch.nn.functional.interpolate(x, mode=self.mode, align_corners=False, scale_factor=scale_factor)
|
778 |
+
return x
|
779 |
+
|
780 |
+
class FirstStagePostProcessor(nn.Module):
|
781 |
+
|
782 |
+
def __init__(self, ch_mult:list, in_channels,
|
783 |
+
pretrained_model:nn.Module=None,
|
784 |
+
reshape=False,
|
785 |
+
n_channels=None,
|
786 |
+
dropout=0.,
|
787 |
+
pretrained_config=None):
|
788 |
+
super().__init__()
|
789 |
+
if pretrained_config is None:
|
790 |
+
assert pretrained_model is not None, 'Either "pretrained_model" or "pretrained_config" must not be None'
|
791 |
+
self.pretrained_model = pretrained_model
|
792 |
+
else:
|
793 |
+
assert pretrained_config is not None, 'Either "pretrained_model" or "pretrained_config" must not be None'
|
794 |
+
self.instantiate_pretrained(pretrained_config)
|
795 |
+
|
796 |
+
self.do_reshape = reshape
|
797 |
+
|
798 |
+
if n_channels is None:
|
799 |
+
n_channels = self.pretrained_model.encoder.ch
|
800 |
+
|
801 |
+
self.proj_norm = Normalize(in_channels,num_groups=in_channels//2)
|
802 |
+
self.proj = nn.Conv2d(in_channels,n_channels,kernel_size=3,
|
803 |
+
stride=1,padding=1)
|
804 |
+
|
805 |
+
blocks = []
|
806 |
+
downs = []
|
807 |
+
ch_in = n_channels
|
808 |
+
for m in ch_mult:
|
809 |
+
blocks.append(ResnetBlock(in_channels=ch_in,out_channels=m*n_channels,dropout=dropout))
|
810 |
+
ch_in = m * n_channels
|
811 |
+
downs.append(Downsample(ch_in, with_conv=False))
|
812 |
+
|
813 |
+
self.model = nn.ModuleList(blocks)
|
814 |
+
self.downsampler = nn.ModuleList(downs)
|
815 |
+
|
816 |
+
|
817 |
+
def instantiate_pretrained(self, config):
|
818 |
+
model = instantiate_from_config(config)
|
819 |
+
self.pretrained_model = model.eval()
|
820 |
+
# self.pretrained_model.train = False
|
821 |
+
for param in self.pretrained_model.parameters():
|
822 |
+
param.requires_grad = False
|
823 |
+
|
824 |
+
|
825 |
+
@torch.no_grad()
|
826 |
+
def encode_with_pretrained(self,x):
|
827 |
+
c = self.pretrained_model.encode(x)
|
828 |
+
if isinstance(c, DiagonalGaussianDistribution):
|
829 |
+
c = c.mode()
|
830 |
+
return c
|
831 |
+
|
832 |
+
def forward(self,x):
|
833 |
+
z_fs = self.encode_with_pretrained(x)
|
834 |
+
z = self.proj_norm(z_fs)
|
835 |
+
z = self.proj(z)
|
836 |
+
z = nonlinearity(z)
|
837 |
+
|
838 |
+
for submodel, downmodel in zip(self.model,self.downsampler):
|
839 |
+
z = submodel(z,temb=None)
|
840 |
+
z = downmodel(z)
|
841 |
+
|
842 |
+
if self.do_reshape:
|
843 |
+
z = rearrange(z,'b c h w -> b (h w) c')
|
844 |
+
return z
|
845 |
+
|
lvdm/{models/modules → modules/networks}/openaimodel3d.py
RENAMED
@@ -1,38 +1,25 @@
|
|
1 |
-
from abc import abstractmethod
|
2 |
-
import math
|
3 |
-
from einops import rearrange
|
4 |
from functools import partial
|
5 |
-
|
6 |
-
import torch
|
7 |
import torch.nn as nn
|
|
|
8 |
import torch.nn.functional as F
|
9 |
-
from
|
10 |
-
|
11 |
-
from lvdm.
|
12 |
-
|
13 |
conv_nd,
|
14 |
linear,
|
15 |
avg_pool_nd,
|
16 |
-
|
17 |
-
normalization,
|
18 |
-
timestep_embedding,
|
19 |
-
nonlinearity,
|
20 |
)
|
|
|
21 |
|
22 |
-
# dummy replace
|
23 |
-
def convert_module_to_f16(x):
|
24 |
-
pass
|
25 |
-
|
26 |
-
def convert_module_to_f32(x):
|
27 |
-
pass
|
28 |
|
29 |
-
## go
|
30 |
-
# ---------------------------------------------------------------------------------------------------
|
31 |
class TimestepBlock(nn.Module):
|
32 |
"""
|
33 |
Any module where forward() takes timestep embeddings as a second argument.
|
34 |
"""
|
35 |
-
|
36 |
@abstractmethod
|
37 |
def forward(self, x, emb):
|
38 |
"""
|
@@ -40,107 +27,85 @@ class TimestepBlock(nn.Module):
|
|
40 |
"""
|
41 |
|
42 |
|
43 |
-
# ---------------------------------------------------------------------------------------------------
|
44 |
class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
|
45 |
"""
|
46 |
A sequential module that passes timestep embeddings to the children that
|
47 |
support it as an extra input.
|
48 |
"""
|
49 |
|
50 |
-
def forward(self, x, emb, context,
|
51 |
for layer in self:
|
52 |
if isinstance(layer, TimestepBlock):
|
53 |
-
x = layer(x, emb,
|
54 |
-
elif isinstance(layer,
|
55 |
-
x = layer(x, context
|
|
|
|
|
|
|
|
|
56 |
else:
|
57 |
-
x = layer(x)
|
58 |
return x
|
59 |
|
60 |
|
61 |
-
|
62 |
-
class Upsample(nn.Module):
|
63 |
"""
|
64 |
-
|
65 |
:param channels: channels in the inputs and outputs.
|
66 |
:param use_conv: a bool determining if a convolution is applied.
|
67 |
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
68 |
-
|
69 |
"""
|
70 |
|
71 |
-
def __init__(self, channels, use_conv, dims=2, out_channels=None,
|
72 |
-
kernel_size_t=3,
|
73 |
-
padding_t=1,
|
74 |
-
):
|
75 |
super().__init__()
|
76 |
self.channels = channels
|
77 |
self.out_channels = out_channels or channels
|
78 |
self.use_conv = use_conv
|
79 |
self.dims = dims
|
|
|
80 |
if use_conv:
|
81 |
-
self.
|
82 |
-
|
83 |
-
def forward(self, x):
|
84 |
-
assert x.shape[1] == self.channels
|
85 |
-
if self.dims == 3:
|
86 |
-
x = F.interpolate(
|
87 |
-
x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest"
|
88 |
)
|
89 |
else:
|
90 |
-
|
91 |
-
|
92 |
-
x = self.conv(x)
|
93 |
-
return x
|
94 |
-
|
95 |
-
|
96 |
-
# ---------------------------------------------------------------------------------------------------
|
97 |
-
class TransposedUpsample(nn.Module):
|
98 |
-
'Learned 2x upsampling without padding'
|
99 |
-
def __init__(self, channels, out_channels=None, ks=5):
|
100 |
-
super().__init__()
|
101 |
-
self.channels = channels
|
102 |
-
self.out_channels = out_channels or channels
|
103 |
-
|
104 |
-
self.up = nn.ConvTranspose2d(self.channels,self.out_channels,kernel_size=ks,stride=2)
|
105 |
|
106 |
-
def forward(self,x):
|
107 |
-
|
|
|
108 |
|
109 |
|
110 |
-
|
111 |
-
class Downsample(nn.Module):
|
112 |
"""
|
113 |
-
|
114 |
:param channels: channels in the inputs and outputs.
|
115 |
:param use_conv: a bool determining if a convolution is applied.
|
116 |
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
117 |
-
|
118 |
"""
|
119 |
|
120 |
-
def __init__(self, channels, use_conv, dims=2, out_channels=None,
|
121 |
-
kernel_size_t=3,
|
122 |
-
padding_t=1,
|
123 |
-
):
|
124 |
super().__init__()
|
125 |
self.channels = channels
|
126 |
self.out_channels = out_channels or channels
|
127 |
self.use_conv = use_conv
|
128 |
self.dims = dims
|
129 |
-
stride = 2 if dims != 3 else (1, 2, 2)
|
130 |
if use_conv:
|
131 |
-
self.
|
132 |
-
dims, self.channels, self.out_channels, (kernel_size_t, 3,3), stride=stride, padding=(padding_t, 1,1)
|
133 |
-
)
|
134 |
-
else:
|
135 |
-
assert self.channels == self.out_channels
|
136 |
-
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
|
137 |
|
138 |
def forward(self, x):
|
139 |
assert x.shape[1] == self.channels
|
140 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
|
142 |
|
143 |
-
# ---------------------------------------------------------------------------------------------------
|
144 |
class ResBlock(TimestepBlock):
|
145 |
"""
|
146 |
A residual block that can optionally change the number of channels.
|
@@ -152,7 +117,6 @@ class ResBlock(TimestepBlock):
|
|
152 |
convolution instead of a smaller 1x1 convolution to change the
|
153 |
channels in the skip connection.
|
154 |
:param dims: determines if the signal is 1D, 2D, or 3D.
|
155 |
-
:param use_checkpoint: if True, use gradient checkpointing on this module.
|
156 |
:param up: if True, use this block for upsampling.
|
157 |
:param down: if True, use this block for downsampling.
|
158 |
"""
|
@@ -163,17 +127,14 @@ class ResBlock(TimestepBlock):
|
|
163 |
emb_channels,
|
164 |
dropout,
|
165 |
out_channels=None,
|
166 |
-
use_conv=False,
|
167 |
use_scale_shift_norm=False,
|
168 |
dims=2,
|
169 |
use_checkpoint=False,
|
|
|
170 |
up=False,
|
171 |
down=False,
|
172 |
-
|
173 |
-
|
174 |
-
padding_t=1,
|
175 |
-
nonlinearity_type='silu',
|
176 |
-
**kwargs
|
177 |
):
|
178 |
super().__init__()
|
179 |
self.channels = channels
|
@@ -183,65 +144,68 @@ class ResBlock(TimestepBlock):
|
|
183 |
self.use_conv = use_conv
|
184 |
self.use_checkpoint = use_checkpoint
|
185 |
self.use_scale_shift_norm = use_scale_shift_norm
|
186 |
-
self.
|
187 |
|
188 |
self.in_layers = nn.Sequential(
|
189 |
normalization(channels),
|
190 |
-
|
191 |
-
conv_nd(dims, channels, self.out_channels,
|
192 |
)
|
193 |
|
194 |
self.updown = up or down
|
195 |
|
196 |
if up:
|
197 |
-
self.h_upd = Upsample(channels, False, dims
|
198 |
-
self.x_upd = Upsample(channels, False, dims
|
199 |
elif down:
|
200 |
-
self.h_upd = Downsample(channels, False, dims
|
201 |
-
self.x_upd = Downsample(channels, False, dims
|
202 |
else:
|
203 |
self.h_upd = self.x_upd = nn.Identity()
|
204 |
|
205 |
self.emb_layers = nn.Sequential(
|
206 |
-
|
207 |
-
|
208 |
emb_channels,
|
209 |
2 * self.out_channels if use_scale_shift_norm else self.out_channels,
|
210 |
),
|
211 |
)
|
212 |
self.out_layers = nn.Sequential(
|
213 |
normalization(self.out_channels),
|
214 |
-
|
215 |
nn.Dropout(p=dropout),
|
216 |
-
zero_module(
|
217 |
-
conv_nd(dims, self.out_channels, self.out_channels, (kernel_size_t, 3,3), padding=(padding_t, 1,1))
|
218 |
-
),
|
219 |
)
|
220 |
|
221 |
if self.out_channels == channels:
|
222 |
self.skip_connection = nn.Identity()
|
223 |
elif use_conv:
|
224 |
-
self.skip_connection = conv_nd(
|
225 |
-
dims, channels, self.out_channels, (kernel_size_t, 3,3), padding=(padding_t, 1,1)
|
226 |
-
)
|
227 |
else:
|
228 |
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
|
229 |
-
|
230 |
|
231 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
232 |
"""
|
233 |
Apply the block to a Tensor, conditioned on a timestep embedding.
|
234 |
:param x: an [N x C x ...] Tensor of features.
|
235 |
:param emb: an [N x emb_channels] Tensor of timestep embeddings.
|
236 |
:return: an [N x C x ...] Tensor of outputs.
|
237 |
"""
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
|
244 |
-
def _forward(self, x, emb,):
|
245 |
if self.updown:
|
246 |
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
|
247 |
h = in_rest(x)
|
@@ -250,38 +214,72 @@ class ResBlock(TimestepBlock):
|
|
250 |
h = in_conv(h)
|
251 |
else:
|
252 |
h = self.in_layers(x)
|
253 |
-
|
254 |
emb_out = self.emb_layers(emb).type(h.dtype)
|
255 |
-
|
256 |
-
emb_out =
|
257 |
-
while len(emb_out.shape) < h.dim():
|
258 |
-
emb_out = emb_out[..., None] # bct -> bct11 or bc -> bc111
|
259 |
-
|
260 |
if self.use_scale_shift_norm:
|
261 |
out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
|
262 |
-
scale, shift =
|
263 |
h = out_norm(h) * (1 + scale) + shift
|
264 |
h = out_rest(h)
|
265 |
else:
|
266 |
h = h + emb_out
|
267 |
h = self.out_layers(h)
|
268 |
-
|
269 |
-
out = self.skip_connection(x) + h
|
270 |
|
271 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
272 |
|
273 |
-
# ---------------------------------------------------------------------------------------------------
|
274 |
-
def make_spatialtemporal_transformer(module_name='attention_temporal', class_name='SpatialTemporalTransformer'):
|
275 |
-
module = __import__(f"lvdm.models.modules.{module_name}", fromlist=[class_name])
|
276 |
-
global STTransformerClass
|
277 |
-
STTransformerClass = getattr(module, class_name)
|
278 |
-
return STTransformerClass
|
279 |
|
280 |
-
# ---------------------------------------------------------------------------------------------------
|
281 |
class UNetModel(nn.Module):
|
282 |
"""
|
283 |
The full UNet model with attention and timestep embedding.
|
284 |
-
:param in_channels:
|
285 |
:param model_channels: base channel count for the model.
|
286 |
:param out_channels: channels in the output Tensor.
|
287 |
:param num_res_blocks: number of residual blocks per downsample.
|
@@ -304,67 +302,45 @@ class UNetModel(nn.Module):
|
|
304 |
of heads for upsampling. Deprecated.
|
305 |
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
|
306 |
:param resblock_updown: use residual blocks for up/downsampling.
|
307 |
-
:param use_new_attention_order: use a different attention pattern for potentially
|
308 |
-
increased efficiency.
|
309 |
"""
|
310 |
|
311 |
-
def __init__(
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
nonlinearity_type='silu',
|
344 |
-
temporalcrossfirst=False,
|
345 |
-
split_stcontext=False,
|
346 |
-
temporal_context_dim=None,
|
347 |
-
use_tempoal_causal_attn=False,
|
348 |
-
ST_transformer_module='attention_temporal',
|
349 |
-
ST_transformer_class='SpatialTemporalTransformer',
|
350 |
-
**kwargs,
|
351 |
-
):
|
352 |
-
super().__init__()
|
353 |
-
assert(use_temporal_transformer)
|
354 |
-
if context_dim is not None:
|
355 |
-
if type(context_dim) == ListConfig:
|
356 |
-
context_dim = list(context_dim)
|
357 |
-
|
358 |
-
if num_heads_upsample == -1:
|
359 |
-
num_heads_upsample = num_heads
|
360 |
-
|
361 |
if num_heads == -1:
|
362 |
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
|
363 |
-
|
364 |
if num_head_channels == -1:
|
365 |
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
|
366 |
|
367 |
-
self.image_size = image_size
|
368 |
self.in_channels = in_channels
|
369 |
self.model_channels = model_channels
|
370 |
self.out_channels = out_channels
|
@@ -373,65 +349,55 @@ class UNetModel(nn.Module):
|
|
373 |
self.dropout = dropout
|
374 |
self.channel_mult = channel_mult
|
375 |
self.conv_resample = conv_resample
|
376 |
-
self.
|
|
|
377 |
self.use_checkpoint = use_checkpoint
|
378 |
-
self.dtype =
|
379 |
-
self.
|
380 |
-
self.
|
381 |
-
self.
|
382 |
-
|
383 |
-
|
384 |
-
self.temporal_length = temporal_length
|
385 |
-
self.cross_attn_on_tempoal = cross_attn_on_tempoal
|
386 |
-
self.temporal_crossattn_type = temporal_crossattn_type
|
387 |
-
self.order = order
|
388 |
-
self.temporalcrossfirst = temporalcrossfirst
|
389 |
-
self.split_stcontext = split_stcontext
|
390 |
-
self.temporal_context_dim = temporal_context_dim
|
391 |
-
self.nonlinearity_type = nonlinearity_type
|
392 |
-
self.use_tempoal_causal_attn = use_tempoal_causal_attn
|
393 |
-
|
394 |
|
395 |
-
time_embed_dim = model_channels * 4
|
396 |
-
self.time_embed_dim = time_embed_dim
|
397 |
self.time_embed = nn.Sequential(
|
398 |
linear(model_channels, time_embed_dim),
|
399 |
-
|
400 |
linear(time_embed_dim, time_embed_dim),
|
401 |
)
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
|
409 |
self.input_blocks = nn.ModuleList(
|
410 |
[
|
411 |
-
TimestepEmbedSequential(
|
412 |
-
conv_nd(dims, in_channels, model_channels, (kernel_size_t, 3,3), padding=(padding_t, 1,1))
|
413 |
-
)
|
414 |
]
|
415 |
)
|
416 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
417 |
input_block_chans = [model_channels]
|
418 |
ch = model_channels
|
419 |
ds = 1
|
420 |
for level, mult in enumerate(channel_mult):
|
421 |
for _ in range(num_res_blocks):
|
422 |
layers = [
|
423 |
-
ResBlock(
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
out_channels=mult * model_channels,
|
428 |
-
dims=dims,
|
429 |
-
use_checkpoint=use_checkpoint,
|
430 |
-
use_scale_shift_norm=use_scale_shift_norm,
|
431 |
-
kernel_size_t=kernel_size_t,
|
432 |
-
padding_t=padding_t,
|
433 |
-
nonlinearity_type=nonlinearity_type,
|
434 |
-
**kwargs
|
435 |
)
|
436 |
]
|
437 |
ch = mult * model_channels
|
@@ -441,120 +407,85 @@ class UNetModel(nn.Module):
|
|
441 |
else:
|
442 |
num_heads = ch // num_head_channels
|
443 |
dim_head = num_head_channels
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
-
|
450 |
-
|
451 |
-
|
452 |
-
|
453 |
-
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
|
459 |
-
|
460 |
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
461 |
-
self._feature_size += ch
|
462 |
input_block_chans.append(ch)
|
463 |
if level != len(channel_mult) - 1:
|
464 |
out_ch = ch
|
465 |
self.input_blocks.append(
|
466 |
TimestepEmbedSequential(
|
467 |
-
ResBlock(
|
468 |
-
|
469 |
-
time_embed_dim,
|
470 |
-
dropout,
|
471 |
-
out_channels=out_ch,
|
472 |
-
dims=dims,
|
473 |
-
use_checkpoint=use_checkpoint,
|
474 |
use_scale_shift_norm=use_scale_shift_norm,
|
475 |
-
down=True
|
476 |
-
kernel_size_t=kernel_size_t,
|
477 |
-
padding_t=padding_t,
|
478 |
-
nonlinearity_type=nonlinearity_type,
|
479 |
-
**kwargs
|
480 |
)
|
481 |
if resblock_updown
|
482 |
-
else Downsample(
|
483 |
-
ch, conv_resample, dims=dims, out_channels=out_ch, kernel_size_t=kernel_size_t, padding_t=padding_t
|
484 |
-
)
|
485 |
)
|
486 |
)
|
487 |
ch = out_ch
|
488 |
input_block_chans.append(ch)
|
489 |
ds *= 2
|
490 |
-
self._feature_size += ch
|
491 |
|
492 |
if num_head_channels == -1:
|
493 |
dim_head = ch // num_heads
|
494 |
else:
|
495 |
num_heads = ch // num_head_channels
|
496 |
dim_head = num_head_channels
|
497 |
-
|
498 |
-
|
499 |
-
|
500 |
-
|
501 |
-
|
502 |
-
time_embed_dim,
|
503 |
-
dropout,
|
504 |
-
dims=dims,
|
505 |
-
use_checkpoint=use_checkpoint,
|
506 |
-
use_scale_shift_norm=use_scale_shift_norm,
|
507 |
-
kernel_size_t=kernel_size_t,
|
508 |
-
padding_t=padding_t,
|
509 |
-
nonlinearity_type=nonlinearity_type,
|
510 |
-
**kwargs
|
511 |
-
),
|
512 |
-
STTransformerClass(
|
513 |
-
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
|
514 |
-
# temporal related
|
515 |
-
temporal_length=temporal_length,
|
516 |
-
use_relative_position=use_relative_position,
|
517 |
-
cross_attn_on_tempoal=cross_attn_on_tempoal,
|
518 |
-
temporal_crossattn_type=temporal_crossattn_type,
|
519 |
-
order=order,
|
520 |
-
temporalcrossfirst=temporalcrossfirst,
|
521 |
-
split_stcontext=split_stcontext,
|
522 |
-
temporal_context_dim=temporal_context_dim,
|
523 |
-
use_tempoal_causal_attn=use_tempoal_causal_attn,
|
524 |
-
**kwargs,
|
525 |
-
),
|
526 |
-
ResBlock(
|
527 |
-
ch,
|
528 |
-
time_embed_dim,
|
529 |
-
dropout,
|
530 |
-
dims=dims,
|
531 |
-
use_checkpoint=use_checkpoint,
|
532 |
-
use_scale_shift_norm=use_scale_shift_norm,
|
533 |
-
kernel_size_t=kernel_size_t,
|
534 |
-
padding_t=padding_t,
|
535 |
-
nonlinearity_type=nonlinearity_type,
|
536 |
-
**kwargs
|
537 |
),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
538 |
)
|
539 |
-
self.
|
540 |
|
541 |
self.output_blocks = nn.ModuleList([])
|
542 |
for level, mult in list(enumerate(channel_mult))[::-1]:
|
543 |
for i in range(num_res_blocks + 1):
|
544 |
ich = input_block_chans.pop()
|
545 |
layers = [
|
546 |
-
ResBlock(
|
547 |
-
|
548 |
-
|
549 |
-
|
550 |
-
out_channels=model_channels * mult,
|
551 |
-
dims=dims,
|
552 |
-
use_checkpoint=use_checkpoint,
|
553 |
-
use_scale_shift_norm=use_scale_shift_norm,
|
554 |
-
kernel_size_t=kernel_size_t,
|
555 |
-
padding_t=padding_t,
|
556 |
-
nonlinearity_type=nonlinearity_type,
|
557 |
-
**kwargs
|
558 |
)
|
559 |
]
|
560 |
ch = model_channels * mult
|
@@ -564,107 +495,83 @@ class UNetModel(nn.Module):
|
|
564 |
else:
|
565 |
num_heads = ch // num_head_channels
|
566 |
dim_head = num_head_channels
|
567 |
-
if legacy:
|
568 |
-
dim_head = ch // num_heads if use_temporal_transformer else num_head_channels
|
569 |
layers.append(
|
570 |
-
|
571 |
-
|
572 |
-
|
573 |
-
|
574 |
-
use_relative_position=use_relative_position,
|
575 |
-
cross_attn_on_tempoal=cross_attn_on_tempoal,
|
576 |
-
temporal_crossattn_type=temporal_crossattn_type,
|
577 |
-
order=order,
|
578 |
-
temporalcrossfirst=temporalcrossfirst,
|
579 |
-
split_stcontext=split_stcontext,
|
580 |
-
temporal_context_dim=temporal_context_dim,
|
581 |
-
use_tempoal_causal_attn=use_tempoal_causal_attn,
|
582 |
-
**kwargs,
|
583 |
)
|
584 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
585 |
if level and i == num_res_blocks:
|
586 |
out_ch = ch
|
587 |
layers.append(
|
588 |
-
ResBlock(
|
589 |
-
|
590 |
-
time_embed_dim,
|
591 |
-
dropout,
|
592 |
-
out_channels=out_ch,
|
593 |
-
dims=dims,
|
594 |
-
use_checkpoint=use_checkpoint,
|
595 |
use_scale_shift_norm=use_scale_shift_norm,
|
596 |
-
up=True
|
597 |
-
kernel_size_t=kernel_size_t,
|
598 |
-
padding_t=padding_t,
|
599 |
-
nonlinearity_type=nonlinearity_type,
|
600 |
-
**kwargs
|
601 |
)
|
602 |
if resblock_updown
|
603 |
-
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch
|
604 |
)
|
605 |
ds //= 2
|
606 |
self.output_blocks.append(TimestepEmbedSequential(*layers))
|
607 |
-
self._feature_size += ch
|
608 |
|
609 |
self.out = nn.Sequential(
|
610 |
normalization(ch),
|
611 |
-
|
612 |
-
zero_module(conv_nd(dims, model_channels, out_channels,
|
613 |
)
|
614 |
-
|
615 |
|
616 |
-
def
|
617 |
-
|
618 |
-
|
619 |
-
"""
|
620 |
-
self.input_blocks.apply(convert_module_to_f16)
|
621 |
-
self.middle_block.apply(convert_module_to_f16)
|
622 |
-
self.output_blocks.apply(convert_module_to_f16)
|
623 |
|
624 |
-
|
625 |
-
|
626 |
-
|
627 |
-
|
628 |
-
|
629 |
-
self.middle_block.apply(convert_module_to_f32)
|
630 |
-
self.output_blocks.apply(convert_module_to_f32)
|
631 |
|
632 |
-
|
633 |
-
|
634 |
-
|
635 |
-
|
636 |
-
|
637 |
-
|
638 |
-
|
639 |
-
:return: an [N x C x ...] Tensor of outputs.
|
640 |
-
"""
|
641 |
-
|
642 |
-
hs = []
|
643 |
-
if time_emb_replace is None:
|
644 |
-
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
|
645 |
-
emb = self.time_embed(t_emb)
|
646 |
-
else:
|
647 |
-
emb = time_emb_replace
|
648 |
-
|
649 |
-
if y is not None: # if class-conditional model, inject class labels
|
650 |
-
assert y.shape == (x.shape[0],)
|
651 |
-
emb = emb + self.label_emb(y)
|
652 |
|
653 |
h = x.type(self.dtype)
|
654 |
adapter_idx = 0
|
|
|
655 |
for id, module in enumerate(self.input_blocks):
|
656 |
-
h = module(h, emb, context,
|
|
|
|
|
657 |
## plug-in adapter features
|
658 |
if ((id+1)%3 == 0) and features_adapter is not None:
|
659 |
h = h + features_adapter[adapter_idx]
|
660 |
adapter_idx += 1
|
661 |
hs.append(h)
|
662 |
if features_adapter is not None:
|
663 |
-
assert len(features_adapter)==adapter_idx, '
|
664 |
|
665 |
-
h = self.middle_block(h, emb, context,
|
666 |
for module in self.output_blocks:
|
667 |
-
h =
|
668 |
-
h = module(h, emb, context,
|
669 |
h = h.type(x.dtype)
|
670 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from functools import partial
|
2 |
+
from abc import abstractmethod
|
3 |
+
import torch
|
4 |
import torch.nn as nn
|
5 |
+
from einops import rearrange
|
6 |
import torch.nn.functional as F
|
7 |
+
from lvdm.models.utils_diffusion import timestep_embedding
|
8 |
+
from lvdm.common import checkpoint
|
9 |
+
from lvdm.basics import (
|
10 |
+
zero_module,
|
11 |
conv_nd,
|
12 |
linear,
|
13 |
avg_pool_nd,
|
14 |
+
normalization
|
|
|
|
|
|
|
15 |
)
|
16 |
+
from lvdm.modules.attention import SpatialTransformer, TemporalTransformer
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
|
|
|
|
19 |
class TimestepBlock(nn.Module):
|
20 |
"""
|
21 |
Any module where forward() takes timestep embeddings as a second argument.
|
22 |
"""
|
|
|
23 |
@abstractmethod
|
24 |
def forward(self, x, emb):
|
25 |
"""
|
|
|
27 |
"""
|
28 |
|
29 |
|
|
|
30 |
class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
|
31 |
"""
|
32 |
A sequential module that passes timestep embeddings to the children that
|
33 |
support it as an extra input.
|
34 |
"""
|
35 |
|
36 |
+
def forward(self, x, emb, context=None, batch_size=None):
|
37 |
for layer in self:
|
38 |
if isinstance(layer, TimestepBlock):
|
39 |
+
x = layer(x, emb, batch_size)
|
40 |
+
elif isinstance(layer, SpatialTransformer):
|
41 |
+
x = layer(x, context)
|
42 |
+
elif isinstance(layer, TemporalTransformer):
|
43 |
+
x = rearrange(x, '(b f) c h w -> b c f h w', b=batch_size)
|
44 |
+
x = layer(x, context)
|
45 |
+
x = rearrange(x, 'b c f h w -> (b f) c h w')
|
46 |
else:
|
47 |
+
x = layer(x,)
|
48 |
return x
|
49 |
|
50 |
|
51 |
+
class Downsample(nn.Module):
|
|
|
52 |
"""
|
53 |
+
A downsampling layer with an optional convolution.
|
54 |
:param channels: channels in the inputs and outputs.
|
55 |
:param use_conv: a bool determining if a convolution is applied.
|
56 |
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
57 |
+
downsampling occurs in the inner-two dimensions.
|
58 |
"""
|
59 |
|
60 |
+
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
|
|
|
|
|
|
|
61 |
super().__init__()
|
62 |
self.channels = channels
|
63 |
self.out_channels = out_channels or channels
|
64 |
self.use_conv = use_conv
|
65 |
self.dims = dims
|
66 |
+
stride = 2 if dims != 3 else (1, 2, 2)
|
67 |
if use_conv:
|
68 |
+
self.op = conv_nd(
|
69 |
+
dims, self.channels, self.out_channels, 3, stride=stride, padding=padding
|
|
|
|
|
|
|
|
|
|
|
70 |
)
|
71 |
else:
|
72 |
+
assert self.channels == self.out_channels
|
73 |
+
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
+
def forward(self, x):
|
76 |
+
assert x.shape[1] == self.channels
|
77 |
+
return self.op(x)
|
78 |
|
79 |
|
80 |
+
class Upsample(nn.Module):
|
|
|
81 |
"""
|
82 |
+
An upsampling layer with an optional convolution.
|
83 |
:param channels: channels in the inputs and outputs.
|
84 |
:param use_conv: a bool determining if a convolution is applied.
|
85 |
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
86 |
+
upsampling occurs in the inner-two dimensions.
|
87 |
"""
|
88 |
|
89 |
+
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
|
|
|
|
|
|
|
90 |
super().__init__()
|
91 |
self.channels = channels
|
92 |
self.out_channels = out_channels or channels
|
93 |
self.use_conv = use_conv
|
94 |
self.dims = dims
|
|
|
95 |
if use_conv:
|
96 |
+
self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding)
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
def forward(self, x):
|
99 |
assert x.shape[1] == self.channels
|
100 |
+
if self.dims == 3:
|
101 |
+
x = F.interpolate(x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode='nearest')
|
102 |
+
else:
|
103 |
+
x = F.interpolate(x, scale_factor=2, mode='nearest')
|
104 |
+
if self.use_conv:
|
105 |
+
x = self.conv(x)
|
106 |
+
return x
|
107 |
|
108 |
|
|
|
109 |
class ResBlock(TimestepBlock):
|
110 |
"""
|
111 |
A residual block that can optionally change the number of channels.
|
|
|
117 |
convolution instead of a smaller 1x1 convolution to change the
|
118 |
channels in the skip connection.
|
119 |
:param dims: determines if the signal is 1D, 2D, or 3D.
|
|
|
120 |
:param up: if True, use this block for upsampling.
|
121 |
:param down: if True, use this block for downsampling.
|
122 |
"""
|
|
|
127 |
emb_channels,
|
128 |
dropout,
|
129 |
out_channels=None,
|
|
|
130 |
use_scale_shift_norm=False,
|
131 |
dims=2,
|
132 |
use_checkpoint=False,
|
133 |
+
use_conv=False,
|
134 |
up=False,
|
135 |
down=False,
|
136 |
+
use_temporal_conv=False,
|
137 |
+
tempspatial_aware=False
|
|
|
|
|
|
|
138 |
):
|
139 |
super().__init__()
|
140 |
self.channels = channels
|
|
|
144 |
self.use_conv = use_conv
|
145 |
self.use_checkpoint = use_checkpoint
|
146 |
self.use_scale_shift_norm = use_scale_shift_norm
|
147 |
+
self.use_temporal_conv = use_temporal_conv
|
148 |
|
149 |
self.in_layers = nn.Sequential(
|
150 |
normalization(channels),
|
151 |
+
nn.SiLU(),
|
152 |
+
conv_nd(dims, channels, self.out_channels, 3, padding=1),
|
153 |
)
|
154 |
|
155 |
self.updown = up or down
|
156 |
|
157 |
if up:
|
158 |
+
self.h_upd = Upsample(channels, False, dims)
|
159 |
+
self.x_upd = Upsample(channels, False, dims)
|
160 |
elif down:
|
161 |
+
self.h_upd = Downsample(channels, False, dims)
|
162 |
+
self.x_upd = Downsample(channels, False, dims)
|
163 |
else:
|
164 |
self.h_upd = self.x_upd = nn.Identity()
|
165 |
|
166 |
self.emb_layers = nn.Sequential(
|
167 |
+
nn.SiLU(),
|
168 |
+
nn.Linear(
|
169 |
emb_channels,
|
170 |
2 * self.out_channels if use_scale_shift_norm else self.out_channels,
|
171 |
),
|
172 |
)
|
173 |
self.out_layers = nn.Sequential(
|
174 |
normalization(self.out_channels),
|
175 |
+
nn.SiLU(),
|
176 |
nn.Dropout(p=dropout),
|
177 |
+
zero_module(nn.Conv2d(self.out_channels, self.out_channels, 3, padding=1)),
|
|
|
|
|
178 |
)
|
179 |
|
180 |
if self.out_channels == channels:
|
181 |
self.skip_connection = nn.Identity()
|
182 |
elif use_conv:
|
183 |
+
self.skip_connection = conv_nd(dims, channels, self.out_channels, 3, padding=1)
|
|
|
|
|
184 |
else:
|
185 |
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
|
|
|
186 |
|
187 |
+
if self.use_temporal_conv:
|
188 |
+
self.temopral_conv = TemporalConvBlock(
|
189 |
+
self.out_channels,
|
190 |
+
self.out_channels,
|
191 |
+
dropout=0.1,
|
192 |
+
spatial_aware=tempspatial_aware
|
193 |
+
)
|
194 |
+
|
195 |
+
def forward(self, x, emb, batch_size=None):
|
196 |
"""
|
197 |
Apply the block to a Tensor, conditioned on a timestep embedding.
|
198 |
:param x: an [N x C x ...] Tensor of features.
|
199 |
:param emb: an [N x emb_channels] Tensor of timestep embeddings.
|
200 |
:return: an [N x C x ...] Tensor of outputs.
|
201 |
"""
|
202 |
+
input_tuple = (x, emb,)
|
203 |
+
if batch_size:
|
204 |
+
forward_batchsize = partial(self._forward, batch_size=batch_size)
|
205 |
+
return checkpoint(forward_batchsize, input_tuple, self.parameters(), self.use_checkpoint)
|
206 |
+
return checkpoint(self._forward, input_tuple, self.parameters(), self.use_checkpoint)
|
207 |
|
208 |
+
def _forward(self, x, emb, batch_size=None,):
|
209 |
if self.updown:
|
210 |
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
|
211 |
h = in_rest(x)
|
|
|
214 |
h = in_conv(h)
|
215 |
else:
|
216 |
h = self.in_layers(x)
|
|
|
217 |
emb_out = self.emb_layers(emb).type(h.dtype)
|
218 |
+
while len(emb_out.shape) < len(h.shape):
|
219 |
+
emb_out = emb_out[..., None]
|
|
|
|
|
|
|
220 |
if self.use_scale_shift_norm:
|
221 |
out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
|
222 |
+
scale, shift = torch.chunk(emb_out, 2, dim=1)
|
223 |
h = out_norm(h) * (1 + scale) + shift
|
224 |
h = out_rest(h)
|
225 |
else:
|
226 |
h = h + emb_out
|
227 |
h = self.out_layers(h)
|
228 |
+
h = self.skip_connection(x) + h
|
|
|
229 |
|
230 |
+
if self.use_temporal_conv and batch_size:
|
231 |
+
h = rearrange(h, '(b t) c h w -> b c t h w', b=batch_size)
|
232 |
+
h = self.temopral_conv(h)
|
233 |
+
h = rearrange(h, 'b c t h w -> (b t) c h w')
|
234 |
+
return h
|
235 |
+
|
236 |
+
|
237 |
+
class TemporalConvBlock(nn.Module):
|
238 |
+
"""
|
239 |
+
Adapted from modelscope: https://github.com/modelscope/modelscope/blob/master/modelscope/models/multi_modal/video_synthesis/unet_sd.py
|
240 |
+
"""
|
241 |
+
|
242 |
+
def __init__(self, in_channels, out_channels=None, dropout=0.0, spatial_aware=False):
|
243 |
+
super(TemporalConvBlock, self).__init__()
|
244 |
+
if out_channels is None:
|
245 |
+
out_channels = in_channels
|
246 |
+
self.in_channels = in_channels
|
247 |
+
self.out_channels = out_channels
|
248 |
+
kernel_shape = (3, 1, 1) if not spatial_aware else (3, 3, 3)
|
249 |
+
padding_shape = (1, 0, 0) if not spatial_aware else (1, 1, 1)
|
250 |
+
|
251 |
+
# conv layers
|
252 |
+
self.conv1 = nn.Sequential(
|
253 |
+
nn.GroupNorm(32, in_channels), nn.SiLU(),
|
254 |
+
nn.Conv3d(in_channels, out_channels, kernel_shape, padding=padding_shape))
|
255 |
+
self.conv2 = nn.Sequential(
|
256 |
+
nn.GroupNorm(32, out_channels), nn.SiLU(), nn.Dropout(dropout),
|
257 |
+
nn.Conv3d(out_channels, in_channels, kernel_shape, padding=padding_shape))
|
258 |
+
self.conv3 = nn.Sequential(
|
259 |
+
nn.GroupNorm(32, out_channels), nn.SiLU(), nn.Dropout(dropout),
|
260 |
+
nn.Conv3d(out_channels, in_channels, (3, 1, 1), padding=(1, 0, 0)))
|
261 |
+
self.conv4 = nn.Sequential(
|
262 |
+
nn.GroupNorm(32, out_channels), nn.SiLU(), nn.Dropout(dropout),
|
263 |
+
nn.Conv3d(out_channels, in_channels, (3, 1, 1), padding=(1, 0, 0)))
|
264 |
+
|
265 |
+
# zero out the last layer params,so the conv block is identity
|
266 |
+
nn.init.zeros_(self.conv4[-1].weight)
|
267 |
+
nn.init.zeros_(self.conv4[-1].bias)
|
268 |
+
|
269 |
+
def forward(self, x):
|
270 |
+
identity = x
|
271 |
+
x = self.conv1(x)
|
272 |
+
x = self.conv2(x)
|
273 |
+
x = self.conv3(x)
|
274 |
+
x = self.conv4(x)
|
275 |
+
|
276 |
+
return x + identity
|
277 |
|
|
|
|
|
|
|
|
|
|
|
|
|
278 |
|
|
|
279 |
class UNetModel(nn.Module):
|
280 |
"""
|
281 |
The full UNet model with attention and timestep embedding.
|
282 |
+
:param in_channels: in_channels in the input Tensor.
|
283 |
:param model_channels: base channel count for the model.
|
284 |
:param out_channels: channels in the output Tensor.
|
285 |
:param num_res_blocks: number of residual blocks per downsample.
|
|
|
302 |
of heads for upsampling. Deprecated.
|
303 |
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
|
304 |
:param resblock_updown: use residual blocks for up/downsampling.
|
|
|
|
|
305 |
"""
|
306 |
|
307 |
+
def __init__(self,
|
308 |
+
in_channels,
|
309 |
+
model_channels,
|
310 |
+
out_channels,
|
311 |
+
num_res_blocks,
|
312 |
+
attention_resolutions,
|
313 |
+
dropout=0.0,
|
314 |
+
channel_mult=(1, 2, 4, 8),
|
315 |
+
conv_resample=True,
|
316 |
+
dims=2,
|
317 |
+
context_dim=None,
|
318 |
+
use_scale_shift_norm=False,
|
319 |
+
resblock_updown=False,
|
320 |
+
num_heads=-1,
|
321 |
+
num_head_channels=-1,
|
322 |
+
transformer_depth=1,
|
323 |
+
use_linear=False,
|
324 |
+
use_checkpoint=False,
|
325 |
+
temporal_conv=False,
|
326 |
+
tempspatial_aware=False,
|
327 |
+
temporal_attention=True,
|
328 |
+
temporal_selfatt_only=True,
|
329 |
+
use_relative_position=True,
|
330 |
+
use_causal_attention=False,
|
331 |
+
temporal_length=None,
|
332 |
+
use_fp16=False,
|
333 |
+
addition_attention=False,
|
334 |
+
use_image_attention=False,
|
335 |
+
temporal_transformer_depth=1,
|
336 |
+
fps_cond=False,
|
337 |
+
):
|
338 |
+
super(UNetModel, self).__init__()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
339 |
if num_heads == -1:
|
340 |
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
|
|
|
341 |
if num_head_channels == -1:
|
342 |
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
|
343 |
|
|
|
344 |
self.in_channels = in_channels
|
345 |
self.model_channels = model_channels
|
346 |
self.out_channels = out_channels
|
|
|
349 |
self.dropout = dropout
|
350 |
self.channel_mult = channel_mult
|
351 |
self.conv_resample = conv_resample
|
352 |
+
self.temporal_attention = temporal_attention
|
353 |
+
time_embed_dim = model_channels * 4
|
354 |
self.use_checkpoint = use_checkpoint
|
355 |
+
self.dtype = torch.float16 if use_fp16 else torch.float32
|
356 |
+
self.addition_attention=addition_attention
|
357 |
+
self.use_image_attention = use_image_attention
|
358 |
+
self.fps_cond=fps_cond
|
359 |
+
|
360 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
361 |
|
|
|
|
|
362 |
self.time_embed = nn.Sequential(
|
363 |
linear(model_channels, time_embed_dim),
|
364 |
+
nn.SiLU(),
|
365 |
linear(time_embed_dim, time_embed_dim),
|
366 |
)
|
367 |
+
if self.fps_cond:
|
368 |
+
self.fps_embedding = nn.Sequential(
|
369 |
+
linear(model_channels, time_embed_dim),
|
370 |
+
nn.SiLU(),
|
371 |
+
linear(time_embed_dim, time_embed_dim),
|
372 |
+
)
|
373 |
|
374 |
self.input_blocks = nn.ModuleList(
|
375 |
[
|
376 |
+
TimestepEmbedSequential(conv_nd(dims, in_channels, model_channels, 3, padding=1))
|
|
|
|
|
377 |
]
|
378 |
)
|
379 |
+
if self.addition_attention:
|
380 |
+
self.init_attn=TimestepEmbedSequential(
|
381 |
+
TemporalTransformer(
|
382 |
+
model_channels,
|
383 |
+
n_heads=8,
|
384 |
+
d_head=num_head_channels,
|
385 |
+
depth=transformer_depth,
|
386 |
+
context_dim=context_dim,
|
387 |
+
use_checkpoint=use_checkpoint, only_self_att=temporal_selfatt_only,
|
388 |
+
causal_attention=use_causal_attention, relative_position=use_relative_position,
|
389 |
+
temporal_length=temporal_length))
|
390 |
+
|
391 |
input_block_chans = [model_channels]
|
392 |
ch = model_channels
|
393 |
ds = 1
|
394 |
for level, mult in enumerate(channel_mult):
|
395 |
for _ in range(num_res_blocks):
|
396 |
layers = [
|
397 |
+
ResBlock(ch, time_embed_dim, dropout,
|
398 |
+
out_channels=mult * model_channels, dims=dims, use_checkpoint=use_checkpoint,
|
399 |
+
use_scale_shift_norm=use_scale_shift_norm, tempspatial_aware=tempspatial_aware,
|
400 |
+
use_temporal_conv=temporal_conv
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
401 |
)
|
402 |
]
|
403 |
ch = mult * model_channels
|
|
|
407 |
else:
|
408 |
num_heads = ch // num_head_channels
|
409 |
dim_head = num_head_channels
|
410 |
+
layers.append(
|
411 |
+
SpatialTransformer(ch, num_heads, dim_head,
|
412 |
+
depth=transformer_depth, context_dim=context_dim, use_linear=use_linear,
|
413 |
+
use_checkpoint=use_checkpoint, disable_self_attn=False,
|
414 |
+
img_cross_attention=self.use_image_attention
|
415 |
+
)
|
416 |
+
)
|
417 |
+
if self.temporal_attention:
|
418 |
+
layers.append(
|
419 |
+
TemporalTransformer(ch, num_heads, dim_head,
|
420 |
+
depth=temporal_transformer_depth, context_dim=context_dim, use_linear=use_linear,
|
421 |
+
use_checkpoint=use_checkpoint, only_self_att=temporal_selfatt_only,
|
422 |
+
causal_attention=use_causal_attention, relative_position=use_relative_position,
|
423 |
+
temporal_length=temporal_length
|
424 |
+
)
|
425 |
+
)
|
426 |
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
|
|
427 |
input_block_chans.append(ch)
|
428 |
if level != len(channel_mult) - 1:
|
429 |
out_ch = ch
|
430 |
self.input_blocks.append(
|
431 |
TimestepEmbedSequential(
|
432 |
+
ResBlock(ch, time_embed_dim, dropout,
|
433 |
+
out_channels=out_ch, dims=dims, use_checkpoint=use_checkpoint,
|
|
|
|
|
|
|
|
|
|
|
434 |
use_scale_shift_norm=use_scale_shift_norm,
|
435 |
+
down=True
|
|
|
|
|
|
|
|
|
436 |
)
|
437 |
if resblock_updown
|
438 |
+
else Downsample(ch, conv_resample, dims=dims, out_channels=out_ch)
|
|
|
|
|
439 |
)
|
440 |
)
|
441 |
ch = out_ch
|
442 |
input_block_chans.append(ch)
|
443 |
ds *= 2
|
|
|
444 |
|
445 |
if num_head_channels == -1:
|
446 |
dim_head = ch // num_heads
|
447 |
else:
|
448 |
num_heads = ch // num_head_channels
|
449 |
dim_head = num_head_channels
|
450 |
+
layers = [
|
451 |
+
ResBlock(ch, time_embed_dim, dropout,
|
452 |
+
dims=dims, use_checkpoint=use_checkpoint,
|
453 |
+
use_scale_shift_norm=use_scale_shift_norm, tempspatial_aware=tempspatial_aware,
|
454 |
+
use_temporal_conv=temporal_conv
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
455 |
),
|
456 |
+
SpatialTransformer(ch, num_heads, dim_head,
|
457 |
+
depth=transformer_depth, context_dim=context_dim, use_linear=use_linear,
|
458 |
+
use_checkpoint=use_checkpoint, disable_self_attn=False,
|
459 |
+
img_cross_attention=self.use_image_attention
|
460 |
+
)
|
461 |
+
]
|
462 |
+
if self.temporal_attention:
|
463 |
+
layers.append(
|
464 |
+
TemporalTransformer(ch, num_heads, dim_head,
|
465 |
+
depth=temporal_transformer_depth, context_dim=context_dim, use_linear=use_linear,
|
466 |
+
use_checkpoint=use_checkpoint, only_self_att=temporal_selfatt_only,
|
467 |
+
causal_attention=use_causal_attention, relative_position=use_relative_position,
|
468 |
+
temporal_length=temporal_length
|
469 |
+
)
|
470 |
+
)
|
471 |
+
layers.append(
|
472 |
+
ResBlock(ch, time_embed_dim, dropout,
|
473 |
+
dims=dims, use_checkpoint=use_checkpoint,
|
474 |
+
use_scale_shift_norm=use_scale_shift_norm, tempspatial_aware=tempspatial_aware,
|
475 |
+
use_temporal_conv=temporal_conv
|
476 |
+
)
|
477 |
)
|
478 |
+
self.middle_block = TimestepEmbedSequential(*layers)
|
479 |
|
480 |
self.output_blocks = nn.ModuleList([])
|
481 |
for level, mult in list(enumerate(channel_mult))[::-1]:
|
482 |
for i in range(num_res_blocks + 1):
|
483 |
ich = input_block_chans.pop()
|
484 |
layers = [
|
485 |
+
ResBlock(ch + ich, time_embed_dim, dropout,
|
486 |
+
out_channels=mult * model_channels, dims=dims, use_checkpoint=use_checkpoint,
|
487 |
+
use_scale_shift_norm=use_scale_shift_norm, tempspatial_aware=tempspatial_aware,
|
488 |
+
use_temporal_conv=temporal_conv
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
489 |
)
|
490 |
]
|
491 |
ch = model_channels * mult
|
|
|
495 |
else:
|
496 |
num_heads = ch // num_head_channels
|
497 |
dim_head = num_head_channels
|
|
|
|
|
498 |
layers.append(
|
499 |
+
SpatialTransformer(ch, num_heads, dim_head,
|
500 |
+
depth=transformer_depth, context_dim=context_dim, use_linear=use_linear,
|
501 |
+
use_checkpoint=use_checkpoint, disable_self_attn=False,
|
502 |
+
img_cross_attention=self.use_image_attention
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
503 |
)
|
504 |
)
|
505 |
+
if self.temporal_attention:
|
506 |
+
layers.append(
|
507 |
+
TemporalTransformer(ch, num_heads, dim_head,
|
508 |
+
depth=temporal_transformer_depth, context_dim=context_dim, use_linear=use_linear,
|
509 |
+
use_checkpoint=use_checkpoint, only_self_att=temporal_selfatt_only,
|
510 |
+
causal_attention=use_causal_attention, relative_position=use_relative_position,
|
511 |
+
temporal_length=temporal_length
|
512 |
+
)
|
513 |
+
)
|
514 |
if level and i == num_res_blocks:
|
515 |
out_ch = ch
|
516 |
layers.append(
|
517 |
+
ResBlock(ch, time_embed_dim, dropout,
|
518 |
+
out_channels=out_ch, dims=dims, use_checkpoint=use_checkpoint,
|
|
|
|
|
|
|
|
|
|
|
519 |
use_scale_shift_norm=use_scale_shift_norm,
|
520 |
+
up=True
|
|
|
|
|
|
|
|
|
521 |
)
|
522 |
if resblock_updown
|
523 |
+
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
|
524 |
)
|
525 |
ds //= 2
|
526 |
self.output_blocks.append(TimestepEmbedSequential(*layers))
|
|
|
527 |
|
528 |
self.out = nn.Sequential(
|
529 |
normalization(ch),
|
530 |
+
nn.SiLU(),
|
531 |
+
zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
|
532 |
)
|
|
|
533 |
|
534 |
+
def forward(self, x, timesteps, context=None, features_adapter=None, fps=16, **kwargs):
|
535 |
+
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
|
536 |
+
emb = self.time_embed(t_emb)
|
|
|
|
|
|
|
|
|
537 |
|
538 |
+
if self.fps_cond:
|
539 |
+
if type(fps) == int:
|
540 |
+
fps = torch.full_like(timesteps, fps)
|
541 |
+
fps_emb = timestep_embedding(fps,self.model_channels, repeat_only=False)
|
542 |
+
emb += self.fps_embedding(fps_emb)
|
|
|
|
|
543 |
|
544 |
+
b,_,t,_,_ = x.shape
|
545 |
+
## repeat t times for context [(b t) 77 768] & time embedding
|
546 |
+
context = context.repeat_interleave(repeats=t, dim=0)
|
547 |
+
emb = emb.repeat_interleave(repeats=t, dim=0)
|
548 |
+
|
549 |
+
## always in shape (b t) c h w, except for temporal layer
|
550 |
+
x = rearrange(x, 'b c t h w -> (b t) c h w')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
551 |
|
552 |
h = x.type(self.dtype)
|
553 |
adapter_idx = 0
|
554 |
+
hs = []
|
555 |
for id, module in enumerate(self.input_blocks):
|
556 |
+
h = module(h, emb, context=context, batch_size=b)
|
557 |
+
if id ==0 and self.addition_attention:
|
558 |
+
h = self.init_attn(h, emb, context=context, batch_size=b)
|
559 |
## plug-in adapter features
|
560 |
if ((id+1)%3 == 0) and features_adapter is not None:
|
561 |
h = h + features_adapter[adapter_idx]
|
562 |
adapter_idx += 1
|
563 |
hs.append(h)
|
564 |
if features_adapter is not None:
|
565 |
+
assert len(features_adapter)==adapter_idx, 'Wrong features_adapter'
|
566 |
|
567 |
+
h = self.middle_block(h, emb, context=context, batch_size=b)
|
568 |
for module in self.output_blocks:
|
569 |
+
h = torch.cat([h, hs.pop()], dim=1)
|
570 |
+
h = module(h, emb, context=context, batch_size=b)
|
571 |
h = h.type(x.dtype)
|
572 |
+
y = self.out(h)
|
573 |
+
|
574 |
+
# reshape back to (b c t h w)
|
575 |
+
y = rearrange(y, '(b t) c h w -> b c t h w', b=b)
|
576 |
+
return y
|
577 |
+
|
lvdm/modules/x_transformer.py
ADDED
@@ -0,0 +1,640 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""shout-out to https://github.com/lucidrains/x-transformers/tree/main/x_transformers"""
|
2 |
+
from functools import partial
|
3 |
+
from inspect import isfunction
|
4 |
+
from collections import namedtuple
|
5 |
+
from einops import rearrange, repeat
|
6 |
+
import torch
|
7 |
+
from torch import nn, einsum
|
8 |
+
import torch.nn.functional as F
|
9 |
+
|
10 |
+
# constants
|
11 |
+
DEFAULT_DIM_HEAD = 64
|
12 |
+
|
13 |
+
Intermediates = namedtuple('Intermediates', [
|
14 |
+
'pre_softmax_attn',
|
15 |
+
'post_softmax_attn'
|
16 |
+
])
|
17 |
+
|
18 |
+
LayerIntermediates = namedtuple('Intermediates', [
|
19 |
+
'hiddens',
|
20 |
+
'attn_intermediates'
|
21 |
+
])
|
22 |
+
|
23 |
+
|
24 |
+
class AbsolutePositionalEmbedding(nn.Module):
|
25 |
+
def __init__(self, dim, max_seq_len):
|
26 |
+
super().__init__()
|
27 |
+
self.emb = nn.Embedding(max_seq_len, dim)
|
28 |
+
self.init_()
|
29 |
+
|
30 |
+
def init_(self):
|
31 |
+
nn.init.normal_(self.emb.weight, std=0.02)
|
32 |
+
|
33 |
+
def forward(self, x):
|
34 |
+
n = torch.arange(x.shape[1], device=x.device)
|
35 |
+
return self.emb(n)[None, :, :]
|
36 |
+
|
37 |
+
|
38 |
+
class FixedPositionalEmbedding(nn.Module):
|
39 |
+
def __init__(self, dim):
|
40 |
+
super().__init__()
|
41 |
+
inv_freq = 1. / (10000 ** (torch.arange(0, dim, 2).float() / dim))
|
42 |
+
self.register_buffer('inv_freq', inv_freq)
|
43 |
+
|
44 |
+
def forward(self, x, seq_dim=1, offset=0):
|
45 |
+
t = torch.arange(x.shape[seq_dim], device=x.device).type_as(self.inv_freq) + offset
|
46 |
+
sinusoid_inp = torch.einsum('i , j -> i j', t, self.inv_freq)
|
47 |
+
emb = torch.cat((sinusoid_inp.sin(), sinusoid_inp.cos()), dim=-1)
|
48 |
+
return emb[None, :, :]
|
49 |
+
|
50 |
+
|
51 |
+
# helpers
|
52 |
+
|
53 |
+
def exists(val):
|
54 |
+
return val is not None
|
55 |
+
|
56 |
+
|
57 |
+
def default(val, d):
|
58 |
+
if exists(val):
|
59 |
+
return val
|
60 |
+
return d() if isfunction(d) else d
|
61 |
+
|
62 |
+
|
63 |
+
def always(val):
|
64 |
+
def inner(*args, **kwargs):
|
65 |
+
return val
|
66 |
+
return inner
|
67 |
+
|
68 |
+
|
69 |
+
def not_equals(val):
|
70 |
+
def inner(x):
|
71 |
+
return x != val
|
72 |
+
return inner
|
73 |
+
|
74 |
+
|
75 |
+
def equals(val):
|
76 |
+
def inner(x):
|
77 |
+
return x == val
|
78 |
+
return inner
|
79 |
+
|
80 |
+
|
81 |
+
def max_neg_value(tensor):
|
82 |
+
return -torch.finfo(tensor.dtype).max
|
83 |
+
|
84 |
+
|
85 |
+
# keyword argument helpers
|
86 |
+
|
87 |
+
def pick_and_pop(keys, d):
|
88 |
+
values = list(map(lambda key: d.pop(key), keys))
|
89 |
+
return dict(zip(keys, values))
|
90 |
+
|
91 |
+
|
92 |
+
def group_dict_by_key(cond, d):
|
93 |
+
return_val = [dict(), dict()]
|
94 |
+
for key in d.keys():
|
95 |
+
match = bool(cond(key))
|
96 |
+
ind = int(not match)
|
97 |
+
return_val[ind][key] = d[key]
|
98 |
+
return (*return_val,)
|
99 |
+
|
100 |
+
|
101 |
+
def string_begins_with(prefix, str):
|
102 |
+
return str.startswith(prefix)
|
103 |
+
|
104 |
+
|
105 |
+
def group_by_key_prefix(prefix, d):
|
106 |
+
return group_dict_by_key(partial(string_begins_with, prefix), d)
|
107 |
+
|
108 |
+
|
109 |
+
def groupby_prefix_and_trim(prefix, d):
|
110 |
+
kwargs_with_prefix, kwargs = group_dict_by_key(partial(string_begins_with, prefix), d)
|
111 |
+
kwargs_without_prefix = dict(map(lambda x: (x[0][len(prefix):], x[1]), tuple(kwargs_with_prefix.items())))
|
112 |
+
return kwargs_without_prefix, kwargs
|
113 |
+
|
114 |
+
|
115 |
+
# classes
|
116 |
+
class Scale(nn.Module):
|
117 |
+
def __init__(self, value, fn):
|
118 |
+
super().__init__()
|
119 |
+
self.value = value
|
120 |
+
self.fn = fn
|
121 |
+
|
122 |
+
def forward(self, x, **kwargs):
|
123 |
+
x, *rest = self.fn(x, **kwargs)
|
124 |
+
return (x * self.value, *rest)
|
125 |
+
|
126 |
+
|
127 |
+
class Rezero(nn.Module):
|
128 |
+
def __init__(self, fn):
|
129 |
+
super().__init__()
|
130 |
+
self.fn = fn
|
131 |
+
self.g = nn.Parameter(torch.zeros(1))
|
132 |
+
|
133 |
+
def forward(self, x, **kwargs):
|
134 |
+
x, *rest = self.fn(x, **kwargs)
|
135 |
+
return (x * self.g, *rest)
|
136 |
+
|
137 |
+
|
138 |
+
class ScaleNorm(nn.Module):
|
139 |
+
def __init__(self, dim, eps=1e-5):
|
140 |
+
super().__init__()
|
141 |
+
self.scale = dim ** -0.5
|
142 |
+
self.eps = eps
|
143 |
+
self.g = nn.Parameter(torch.ones(1))
|
144 |
+
|
145 |
+
def forward(self, x):
|
146 |
+
norm = torch.norm(x, dim=-1, keepdim=True) * self.scale
|
147 |
+
return x / norm.clamp(min=self.eps) * self.g
|
148 |
+
|
149 |
+
|
150 |
+
class RMSNorm(nn.Module):
|
151 |
+
def __init__(self, dim, eps=1e-8):
|
152 |
+
super().__init__()
|
153 |
+
self.scale = dim ** -0.5
|
154 |
+
self.eps = eps
|
155 |
+
self.g = nn.Parameter(torch.ones(dim))
|
156 |
+
|
157 |
+
def forward(self, x):
|
158 |
+
norm = torch.norm(x, dim=-1, keepdim=True) * self.scale
|
159 |
+
return x / norm.clamp(min=self.eps) * self.g
|
160 |
+
|
161 |
+
|
162 |
+
class Residual(nn.Module):
|
163 |
+
def forward(self, x, residual):
|
164 |
+
return x + residual
|
165 |
+
|
166 |
+
|
167 |
+
class GRUGating(nn.Module):
|
168 |
+
def __init__(self, dim):
|
169 |
+
super().__init__()
|
170 |
+
self.gru = nn.GRUCell(dim, dim)
|
171 |
+
|
172 |
+
def forward(self, x, residual):
|
173 |
+
gated_output = self.gru(
|
174 |
+
rearrange(x, 'b n d -> (b n) d'),
|
175 |
+
rearrange(residual, 'b n d -> (b n) d')
|
176 |
+
)
|
177 |
+
|
178 |
+
return gated_output.reshape_as(x)
|
179 |
+
|
180 |
+
|
181 |
+
# feedforward
|
182 |
+
|
183 |
+
class GEGLU(nn.Module):
|
184 |
+
def __init__(self, dim_in, dim_out):
|
185 |
+
super().__init__()
|
186 |
+
self.proj = nn.Linear(dim_in, dim_out * 2)
|
187 |
+
|
188 |
+
def forward(self, x):
|
189 |
+
x, gate = self.proj(x).chunk(2, dim=-1)
|
190 |
+
return x * F.gelu(gate)
|
191 |
+
|
192 |
+
|
193 |
+
class FeedForward(nn.Module):
|
194 |
+
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
|
195 |
+
super().__init__()
|
196 |
+
inner_dim = int(dim * mult)
|
197 |
+
dim_out = default(dim_out, dim)
|
198 |
+
project_in = nn.Sequential(
|
199 |
+
nn.Linear(dim, inner_dim),
|
200 |
+
nn.GELU()
|
201 |
+
) if not glu else GEGLU(dim, inner_dim)
|
202 |
+
|
203 |
+
self.net = nn.Sequential(
|
204 |
+
project_in,
|
205 |
+
nn.Dropout(dropout),
|
206 |
+
nn.Linear(inner_dim, dim_out)
|
207 |
+
)
|
208 |
+
|
209 |
+
def forward(self, x):
|
210 |
+
return self.net(x)
|
211 |
+
|
212 |
+
|
213 |
+
# attention.
|
214 |
+
class Attention(nn.Module):
|
215 |
+
def __init__(
|
216 |
+
self,
|
217 |
+
dim,
|
218 |
+
dim_head=DEFAULT_DIM_HEAD,
|
219 |
+
heads=8,
|
220 |
+
causal=False,
|
221 |
+
mask=None,
|
222 |
+
talking_heads=False,
|
223 |
+
sparse_topk=None,
|
224 |
+
use_entmax15=False,
|
225 |
+
num_mem_kv=0,
|
226 |
+
dropout=0.,
|
227 |
+
on_attn=False
|
228 |
+
):
|
229 |
+
super().__init__()
|
230 |
+
if use_entmax15:
|
231 |
+
raise NotImplementedError("Check out entmax activation instead of softmax activation!")
|
232 |
+
self.scale = dim_head ** -0.5
|
233 |
+
self.heads = heads
|
234 |
+
self.causal = causal
|
235 |
+
self.mask = mask
|
236 |
+
|
237 |
+
inner_dim = dim_head * heads
|
238 |
+
|
239 |
+
self.to_q = nn.Linear(dim, inner_dim, bias=False)
|
240 |
+
self.to_k = nn.Linear(dim, inner_dim, bias=False)
|
241 |
+
self.to_v = nn.Linear(dim, inner_dim, bias=False)
|
242 |
+
self.dropout = nn.Dropout(dropout)
|
243 |
+
|
244 |
+
# talking heads
|
245 |
+
self.talking_heads = talking_heads
|
246 |
+
if talking_heads:
|
247 |
+
self.pre_softmax_proj = nn.Parameter(torch.randn(heads, heads))
|
248 |
+
self.post_softmax_proj = nn.Parameter(torch.randn(heads, heads))
|
249 |
+
|
250 |
+
# explicit topk sparse attention
|
251 |
+
self.sparse_topk = sparse_topk
|
252 |
+
|
253 |
+
# entmax
|
254 |
+
#self.attn_fn = entmax15 if use_entmax15 else F.softmax
|
255 |
+
self.attn_fn = F.softmax
|
256 |
+
|
257 |
+
# add memory key / values
|
258 |
+
self.num_mem_kv = num_mem_kv
|
259 |
+
if num_mem_kv > 0:
|
260 |
+
self.mem_k = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head))
|
261 |
+
self.mem_v = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head))
|
262 |
+
|
263 |
+
# attention on attention
|
264 |
+
self.attn_on_attn = on_attn
|
265 |
+
self.to_out = nn.Sequential(nn.Linear(inner_dim, dim * 2), nn.GLU()) if on_attn else nn.Linear(inner_dim, dim)
|
266 |
+
|
267 |
+
def forward(
|
268 |
+
self,
|
269 |
+
x,
|
270 |
+
context=None,
|
271 |
+
mask=None,
|
272 |
+
context_mask=None,
|
273 |
+
rel_pos=None,
|
274 |
+
sinusoidal_emb=None,
|
275 |
+
prev_attn=None,
|
276 |
+
mem=None
|
277 |
+
):
|
278 |
+
b, n, _, h, talking_heads, device = *x.shape, self.heads, self.talking_heads, x.device
|
279 |
+
kv_input = default(context, x)
|
280 |
+
|
281 |
+
q_input = x
|
282 |
+
k_input = kv_input
|
283 |
+
v_input = kv_input
|
284 |
+
|
285 |
+
if exists(mem):
|
286 |
+
k_input = torch.cat((mem, k_input), dim=-2)
|
287 |
+
v_input = torch.cat((mem, v_input), dim=-2)
|
288 |
+
|
289 |
+
if exists(sinusoidal_emb):
|
290 |
+
# in shortformer, the query would start at a position offset depending on the past cached memory
|
291 |
+
offset = k_input.shape[-2] - q_input.shape[-2]
|
292 |
+
q_input = q_input + sinusoidal_emb(q_input, offset=offset)
|
293 |
+
k_input = k_input + sinusoidal_emb(k_input)
|
294 |
+
|
295 |
+
q = self.to_q(q_input)
|
296 |
+
k = self.to_k(k_input)
|
297 |
+
v = self.to_v(v_input)
|
298 |
+
|
299 |
+
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h=h), (q, k, v))
|
300 |
+
|
301 |
+
input_mask = None
|
302 |
+
if any(map(exists, (mask, context_mask))):
|
303 |
+
q_mask = default(mask, lambda: torch.ones((b, n), device=device).bool())
|
304 |
+
k_mask = q_mask if not exists(context) else context_mask
|
305 |
+
k_mask = default(k_mask, lambda: torch.ones((b, k.shape[-2]), device=device).bool())
|
306 |
+
q_mask = rearrange(q_mask, 'b i -> b () i ()')
|
307 |
+
k_mask = rearrange(k_mask, 'b j -> b () () j')
|
308 |
+
input_mask = q_mask * k_mask
|
309 |
+
|
310 |
+
if self.num_mem_kv > 0:
|
311 |
+
mem_k, mem_v = map(lambda t: repeat(t, 'h n d -> b h n d', b=b), (self.mem_k, self.mem_v))
|
312 |
+
k = torch.cat((mem_k, k), dim=-2)
|
313 |
+
v = torch.cat((mem_v, v), dim=-2)
|
314 |
+
if exists(input_mask):
|
315 |
+
input_mask = F.pad(input_mask, (self.num_mem_kv, 0), value=True)
|
316 |
+
|
317 |
+
dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale
|
318 |
+
mask_value = max_neg_value(dots)
|
319 |
+
|
320 |
+
if exists(prev_attn):
|
321 |
+
dots = dots + prev_attn
|
322 |
+
|
323 |
+
pre_softmax_attn = dots
|
324 |
+
|
325 |
+
if talking_heads:
|
326 |
+
dots = einsum('b h i j, h k -> b k i j', dots, self.pre_softmax_proj).contiguous()
|
327 |
+
|
328 |
+
if exists(rel_pos):
|
329 |
+
dots = rel_pos(dots)
|
330 |
+
|
331 |
+
if exists(input_mask):
|
332 |
+
dots.masked_fill_(~input_mask, mask_value)
|
333 |
+
del input_mask
|
334 |
+
|
335 |
+
if self.causal:
|
336 |
+
i, j = dots.shape[-2:]
|
337 |
+
r = torch.arange(i, device=device)
|
338 |
+
mask = rearrange(r, 'i -> () () i ()') < rearrange(r, 'j -> () () () j')
|
339 |
+
mask = F.pad(mask, (j - i, 0), value=False)
|
340 |
+
dots.masked_fill_(mask, mask_value)
|
341 |
+
del mask
|
342 |
+
|
343 |
+
if exists(self.sparse_topk) and self.sparse_topk < dots.shape[-1]:
|
344 |
+
top, _ = dots.topk(self.sparse_topk, dim=-1)
|
345 |
+
vk = top[..., -1].unsqueeze(-1).expand_as(dots)
|
346 |
+
mask = dots < vk
|
347 |
+
dots.masked_fill_(mask, mask_value)
|
348 |
+
del mask
|
349 |
+
|
350 |
+
attn = self.attn_fn(dots, dim=-1)
|
351 |
+
post_softmax_attn = attn
|
352 |
+
|
353 |
+
attn = self.dropout(attn)
|
354 |
+
|
355 |
+
if talking_heads:
|
356 |
+
attn = einsum('b h i j, h k -> b k i j', attn, self.post_softmax_proj).contiguous()
|
357 |
+
|
358 |
+
out = einsum('b h i j, b h j d -> b h i d', attn, v)
|
359 |
+
out = rearrange(out, 'b h n d -> b n (h d)')
|
360 |
+
|
361 |
+
intermediates = Intermediates(
|
362 |
+
pre_softmax_attn=pre_softmax_attn,
|
363 |
+
post_softmax_attn=post_softmax_attn
|
364 |
+
)
|
365 |
+
|
366 |
+
return self.to_out(out), intermediates
|
367 |
+
|
368 |
+
|
369 |
+
class AttentionLayers(nn.Module):
|
370 |
+
def __init__(
|
371 |
+
self,
|
372 |
+
dim,
|
373 |
+
depth,
|
374 |
+
heads=8,
|
375 |
+
causal=False,
|
376 |
+
cross_attend=False,
|
377 |
+
only_cross=False,
|
378 |
+
use_scalenorm=False,
|
379 |
+
use_rmsnorm=False,
|
380 |
+
use_rezero=False,
|
381 |
+
rel_pos_num_buckets=32,
|
382 |
+
rel_pos_max_distance=128,
|
383 |
+
position_infused_attn=False,
|
384 |
+
custom_layers=None,
|
385 |
+
sandwich_coef=None,
|
386 |
+
par_ratio=None,
|
387 |
+
residual_attn=False,
|
388 |
+
cross_residual_attn=False,
|
389 |
+
macaron=False,
|
390 |
+
pre_norm=True,
|
391 |
+
gate_residual=False,
|
392 |
+
**kwargs
|
393 |
+
):
|
394 |
+
super().__init__()
|
395 |
+
ff_kwargs, kwargs = groupby_prefix_and_trim('ff_', kwargs)
|
396 |
+
attn_kwargs, _ = groupby_prefix_and_trim('attn_', kwargs)
|
397 |
+
|
398 |
+
dim_head = attn_kwargs.get('dim_head', DEFAULT_DIM_HEAD)
|
399 |
+
|
400 |
+
self.dim = dim
|
401 |
+
self.depth = depth
|
402 |
+
self.layers = nn.ModuleList([])
|
403 |
+
|
404 |
+
self.has_pos_emb = position_infused_attn
|
405 |
+
self.pia_pos_emb = FixedPositionalEmbedding(dim) if position_infused_attn else None
|
406 |
+
self.rotary_pos_emb = always(None)
|
407 |
+
|
408 |
+
assert rel_pos_num_buckets <= rel_pos_max_distance, 'number of relative position buckets must be less than the relative position max distance'
|
409 |
+
self.rel_pos = None
|
410 |
+
|
411 |
+
self.pre_norm = pre_norm
|
412 |
+
|
413 |
+
self.residual_attn = residual_attn
|
414 |
+
self.cross_residual_attn = cross_residual_attn
|
415 |
+
|
416 |
+
norm_class = ScaleNorm if use_scalenorm else nn.LayerNorm
|
417 |
+
norm_class = RMSNorm if use_rmsnorm else norm_class
|
418 |
+
norm_fn = partial(norm_class, dim)
|
419 |
+
|
420 |
+
norm_fn = nn.Identity if use_rezero else norm_fn
|
421 |
+
branch_fn = Rezero if use_rezero else None
|
422 |
+
|
423 |
+
if cross_attend and not only_cross:
|
424 |
+
default_block = ('a', 'c', 'f')
|
425 |
+
elif cross_attend and only_cross:
|
426 |
+
default_block = ('c', 'f')
|
427 |
+
else:
|
428 |
+
default_block = ('a', 'f')
|
429 |
+
|
430 |
+
if macaron:
|
431 |
+
default_block = ('f',) + default_block
|
432 |
+
|
433 |
+
if exists(custom_layers):
|
434 |
+
layer_types = custom_layers
|
435 |
+
elif exists(par_ratio):
|
436 |
+
par_depth = depth * len(default_block)
|
437 |
+
assert 1 < par_ratio <= par_depth, 'par ratio out of range'
|
438 |
+
default_block = tuple(filter(not_equals('f'), default_block))
|
439 |
+
par_attn = par_depth // par_ratio
|
440 |
+
depth_cut = par_depth * 2 // 3 # 2 / 3 attention layer cutoff suggested by PAR paper
|
441 |
+
par_width = (depth_cut + depth_cut // par_attn) // par_attn
|
442 |
+
assert len(default_block) <= par_width, 'default block is too large for par_ratio'
|
443 |
+
par_block = default_block + ('f',) * (par_width - len(default_block))
|
444 |
+
par_head = par_block * par_attn
|
445 |
+
layer_types = par_head + ('f',) * (par_depth - len(par_head))
|
446 |
+
elif exists(sandwich_coef):
|
447 |
+
assert sandwich_coef > 0 and sandwich_coef <= depth, 'sandwich coefficient should be less than the depth'
|
448 |
+
layer_types = ('a',) * sandwich_coef + default_block * (depth - sandwich_coef) + ('f',) * sandwich_coef
|
449 |
+
else:
|
450 |
+
layer_types = default_block * depth
|
451 |
+
|
452 |
+
self.layer_types = layer_types
|
453 |
+
self.num_attn_layers = len(list(filter(equals('a'), layer_types)))
|
454 |
+
|
455 |
+
for layer_type in self.layer_types:
|
456 |
+
if layer_type == 'a':
|
457 |
+
layer = Attention(dim, heads=heads, causal=causal, **attn_kwargs)
|
458 |
+
elif layer_type == 'c':
|
459 |
+
layer = Attention(dim, heads=heads, **attn_kwargs)
|
460 |
+
elif layer_type == 'f':
|
461 |
+
layer = FeedForward(dim, **ff_kwargs)
|
462 |
+
layer = layer if not macaron else Scale(0.5, layer)
|
463 |
+
else:
|
464 |
+
raise Exception(f'invalid layer type {layer_type}')
|
465 |
+
|
466 |
+
if isinstance(layer, Attention) and exists(branch_fn):
|
467 |
+
layer = branch_fn(layer)
|
468 |
+
|
469 |
+
if gate_residual:
|
470 |
+
residual_fn = GRUGating(dim)
|
471 |
+
else:
|
472 |
+
residual_fn = Residual()
|
473 |
+
|
474 |
+
self.layers.append(nn.ModuleList([
|
475 |
+
norm_fn(),
|
476 |
+
layer,
|
477 |
+
residual_fn
|
478 |
+
]))
|
479 |
+
|
480 |
+
def forward(
|
481 |
+
self,
|
482 |
+
x,
|
483 |
+
context=None,
|
484 |
+
mask=None,
|
485 |
+
context_mask=None,
|
486 |
+
mems=None,
|
487 |
+
return_hiddens=False
|
488 |
+
):
|
489 |
+
hiddens = []
|
490 |
+
intermediates = []
|
491 |
+
prev_attn = None
|
492 |
+
prev_cross_attn = None
|
493 |
+
|
494 |
+
mems = mems.copy() if exists(mems) else [None] * self.num_attn_layers
|
495 |
+
|
496 |
+
for ind, (layer_type, (norm, block, residual_fn)) in enumerate(zip(self.layer_types, self.layers)):
|
497 |
+
is_last = ind == (len(self.layers) - 1)
|
498 |
+
|
499 |
+
if layer_type == 'a':
|
500 |
+
hiddens.append(x)
|
501 |
+
layer_mem = mems.pop(0)
|
502 |
+
|
503 |
+
residual = x
|
504 |
+
|
505 |
+
if self.pre_norm:
|
506 |
+
x = norm(x)
|
507 |
+
|
508 |
+
if layer_type == 'a':
|
509 |
+
out, inter = block(x, mask=mask, sinusoidal_emb=self.pia_pos_emb, rel_pos=self.rel_pos,
|
510 |
+
prev_attn=prev_attn, mem=layer_mem)
|
511 |
+
elif layer_type == 'c':
|
512 |
+
out, inter = block(x, context=context, mask=mask, context_mask=context_mask, prev_attn=prev_cross_attn)
|
513 |
+
elif layer_type == 'f':
|
514 |
+
out = block(x)
|
515 |
+
|
516 |
+
x = residual_fn(out, residual)
|
517 |
+
|
518 |
+
if layer_type in ('a', 'c'):
|
519 |
+
intermediates.append(inter)
|
520 |
+
|
521 |
+
if layer_type == 'a' and self.residual_attn:
|
522 |
+
prev_attn = inter.pre_softmax_attn
|
523 |
+
elif layer_type == 'c' and self.cross_residual_attn:
|
524 |
+
prev_cross_attn = inter.pre_softmax_attn
|
525 |
+
|
526 |
+
if not self.pre_norm and not is_last:
|
527 |
+
x = norm(x)
|
528 |
+
|
529 |
+
if return_hiddens:
|
530 |
+
intermediates = LayerIntermediates(
|
531 |
+
hiddens=hiddens,
|
532 |
+
attn_intermediates=intermediates
|
533 |
+
)
|
534 |
+
|
535 |
+
return x, intermediates
|
536 |
+
|
537 |
+
return x
|
538 |
+
|
539 |
+
|
540 |
+
class Encoder(AttentionLayers):
|
541 |
+
def __init__(self, **kwargs):
|
542 |
+
assert 'causal' not in kwargs, 'cannot set causality on encoder'
|
543 |
+
super().__init__(causal=False, **kwargs)
|
544 |
+
|
545 |
+
|
546 |
+
|
547 |
+
class TransformerWrapper(nn.Module):
|
548 |
+
def __init__(
|
549 |
+
self,
|
550 |
+
*,
|
551 |
+
num_tokens,
|
552 |
+
max_seq_len,
|
553 |
+
attn_layers,
|
554 |
+
emb_dim=None,
|
555 |
+
max_mem_len=0.,
|
556 |
+
emb_dropout=0.,
|
557 |
+
num_memory_tokens=None,
|
558 |
+
tie_embedding=False,
|
559 |
+
use_pos_emb=True
|
560 |
+
):
|
561 |
+
super().__init__()
|
562 |
+
assert isinstance(attn_layers, AttentionLayers), 'attention layers must be one of Encoder or Decoder'
|
563 |
+
|
564 |
+
dim = attn_layers.dim
|
565 |
+
emb_dim = default(emb_dim, dim)
|
566 |
+
|
567 |
+
self.max_seq_len = max_seq_len
|
568 |
+
self.max_mem_len = max_mem_len
|
569 |
+
self.num_tokens = num_tokens
|
570 |
+
|
571 |
+
self.token_emb = nn.Embedding(num_tokens, emb_dim)
|
572 |
+
self.pos_emb = AbsolutePositionalEmbedding(emb_dim, max_seq_len) if (
|
573 |
+
use_pos_emb and not attn_layers.has_pos_emb) else always(0)
|
574 |
+
self.emb_dropout = nn.Dropout(emb_dropout)
|
575 |
+
|
576 |
+
self.project_emb = nn.Linear(emb_dim, dim) if emb_dim != dim else nn.Identity()
|
577 |
+
self.attn_layers = attn_layers
|
578 |
+
self.norm = nn.LayerNorm(dim)
|
579 |
+
|
580 |
+
self.init_()
|
581 |
+
|
582 |
+
self.to_logits = nn.Linear(dim, num_tokens) if not tie_embedding else lambda t: t @ self.token_emb.weight.t()
|
583 |
+
|
584 |
+
# memory tokens (like [cls]) from Memory Transformers paper
|
585 |
+
num_memory_tokens = default(num_memory_tokens, 0)
|
586 |
+
self.num_memory_tokens = num_memory_tokens
|
587 |
+
if num_memory_tokens > 0:
|
588 |
+
self.memory_tokens = nn.Parameter(torch.randn(num_memory_tokens, dim))
|
589 |
+
|
590 |
+
# let funnel encoder know number of memory tokens, if specified
|
591 |
+
if hasattr(attn_layers, 'num_memory_tokens'):
|
592 |
+
attn_layers.num_memory_tokens = num_memory_tokens
|
593 |
+
|
594 |
+
def init_(self):
|
595 |
+
nn.init.normal_(self.token_emb.weight, std=0.02)
|
596 |
+
|
597 |
+
def forward(
|
598 |
+
self,
|
599 |
+
x,
|
600 |
+
return_embeddings=False,
|
601 |
+
mask=None,
|
602 |
+
return_mems=False,
|
603 |
+
return_attn=False,
|
604 |
+
mems=None,
|
605 |
+
**kwargs
|
606 |
+
):
|
607 |
+
b, n, device, num_mem = *x.shape, x.device, self.num_memory_tokens
|
608 |
+
x = self.token_emb(x)
|
609 |
+
x += self.pos_emb(x)
|
610 |
+
x = self.emb_dropout(x)
|
611 |
+
|
612 |
+
x = self.project_emb(x)
|
613 |
+
|
614 |
+
if num_mem > 0:
|
615 |
+
mem = repeat(self.memory_tokens, 'n d -> b n d', b=b)
|
616 |
+
x = torch.cat((mem, x), dim=1)
|
617 |
+
|
618 |
+
# auto-handle masking after appending memory tokens
|
619 |
+
if exists(mask):
|
620 |
+
mask = F.pad(mask, (num_mem, 0), value=True)
|
621 |
+
|
622 |
+
x, intermediates = self.attn_layers(x, mask=mask, mems=mems, return_hiddens=True, **kwargs)
|
623 |
+
x = self.norm(x)
|
624 |
+
|
625 |
+
mem, x = x[:, :num_mem], x[:, num_mem:]
|
626 |
+
|
627 |
+
out = self.to_logits(x) if not return_embeddings else x
|
628 |
+
|
629 |
+
if return_mems:
|
630 |
+
hiddens = intermediates.hiddens
|
631 |
+
new_mems = list(map(lambda pair: torch.cat(pair, dim=-2), zip(mems, hiddens))) if exists(mems) else hiddens
|
632 |
+
new_mems = list(map(lambda t: t[..., -self.max_mem_len:, :].detach(), new_mems))
|
633 |
+
return out, new_mems
|
634 |
+
|
635 |
+
if return_attn:
|
636 |
+
attn_maps = list(map(lambda t: t.post_softmax_attn, intermediates.attn_intermediates))
|
637 |
+
return out, attn_maps
|
638 |
+
|
639 |
+
return out
|
640 |
+
|
lvdm/utils/common_utils.py
DELETED
@@ -1,132 +0,0 @@
|
|
1 |
-
|
2 |
-
import importlib
|
3 |
-
|
4 |
-
import torch
|
5 |
-
import numpy as np
|
6 |
-
|
7 |
-
from inspect import isfunction
|
8 |
-
from PIL import Image, ImageDraw, ImageFont
|
9 |
-
|
10 |
-
|
11 |
-
def str2bool(v):
|
12 |
-
if isinstance(v, bool):
|
13 |
-
return v
|
14 |
-
if v.lower() in ('yes', 'true', 't', 'y', '1'):
|
15 |
-
return True
|
16 |
-
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
|
17 |
-
return False
|
18 |
-
else:
|
19 |
-
raise ValueError('Boolean value expected.')
|
20 |
-
|
21 |
-
|
22 |
-
def instantiate_from_config(config):
|
23 |
-
if not "target" in config:
|
24 |
-
if config == '__is_first_stage__':
|
25 |
-
return None
|
26 |
-
elif config == "__is_unconditional__":
|
27 |
-
return None
|
28 |
-
raise KeyError("Expected key `target` to instantiate.")
|
29 |
-
|
30 |
-
return get_obj_from_str(config["target"])(**config.get("params", dict()))
|
31 |
-
|
32 |
-
def get_obj_from_str(string, reload=False):
|
33 |
-
module, cls = string.rsplit(".", 1)
|
34 |
-
if reload:
|
35 |
-
module_imp = importlib.import_module(module)
|
36 |
-
importlib.reload(module_imp)
|
37 |
-
return getattr(importlib.import_module(module, package=None), cls)
|
38 |
-
|
39 |
-
def log_txt_as_img(wh, xc, size=10):
|
40 |
-
# wh a tuple of (width, height)
|
41 |
-
# xc a list of captions to plot
|
42 |
-
b = len(xc)
|
43 |
-
txts = list()
|
44 |
-
for bi in range(b):
|
45 |
-
txt = Image.new("RGB", wh, color="white")
|
46 |
-
draw = ImageDraw.Draw(txt)
|
47 |
-
font = ImageFont.truetype('data/DejaVuSans.ttf', size=size)
|
48 |
-
nc = int(40 * (wh[0] / 256))
|
49 |
-
lines = "\n".join(xc[bi][start:start + nc] for start in range(0, len(xc[bi]), nc))
|
50 |
-
|
51 |
-
try:
|
52 |
-
draw.text((0, 0), lines, fill="black", font=font)
|
53 |
-
except UnicodeEncodeError:
|
54 |
-
print("Cant encode string for logging. Skipping.")
|
55 |
-
|
56 |
-
txt = np.array(txt).transpose(2, 0, 1) / 127.5 - 1.0
|
57 |
-
txts.append(txt)
|
58 |
-
txts = np.stack(txts)
|
59 |
-
txts = torch.tensor(txts)
|
60 |
-
return txts
|
61 |
-
|
62 |
-
|
63 |
-
def ismap(x):
|
64 |
-
if not isinstance(x, torch.Tensor):
|
65 |
-
return False
|
66 |
-
return (len(x.shape) == 4) and (x.shape[1] > 3)
|
67 |
-
|
68 |
-
|
69 |
-
def isimage(x):
|
70 |
-
if not isinstance(x,torch.Tensor):
|
71 |
-
return False
|
72 |
-
return (len(x.shape) == 4) and (x.shape[1] == 3 or x.shape[1] == 1)
|
73 |
-
|
74 |
-
|
75 |
-
def exists(x):
|
76 |
-
return x is not None
|
77 |
-
|
78 |
-
|
79 |
-
def default(val, d):
|
80 |
-
if exists(val):
|
81 |
-
return val
|
82 |
-
return d() if isfunction(d) else d
|
83 |
-
|
84 |
-
|
85 |
-
def mean_flat(tensor):
|
86 |
-
"""
|
87 |
-
https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/nn.py#L86
|
88 |
-
Take the mean over all non-batch dimensions.
|
89 |
-
"""
|
90 |
-
return tensor.mean(dim=list(range(1, len(tensor.shape))))
|
91 |
-
|
92 |
-
|
93 |
-
def count_params(model, verbose=False):
|
94 |
-
total_params = sum(p.numel() for p in model.parameters())
|
95 |
-
if verbose:
|
96 |
-
print(f"{model.__class__.__name__} has {total_params*1.e-6:.2f} M params.")
|
97 |
-
return total_params
|
98 |
-
|
99 |
-
|
100 |
-
def instantiate_from_config(config):
|
101 |
-
if not "target" in config:
|
102 |
-
if config == '__is_first_stage__':
|
103 |
-
return None
|
104 |
-
elif config == "__is_unconditional__":
|
105 |
-
return None
|
106 |
-
raise KeyError("Expected key `target` to instantiate.")
|
107 |
-
|
108 |
-
if "instantiate_with_dict" in config and config["instantiate_with_dict"]:
|
109 |
-
# input parameter is one dict
|
110 |
-
return get_obj_from_str(config["target"])(config.get("params", dict()), **kwargs)
|
111 |
-
else:
|
112 |
-
return get_obj_from_str(config["target"])(**config.get("params", dict()))
|
113 |
-
|
114 |
-
|
115 |
-
def get_obj_from_str(string, reload=False):
|
116 |
-
module, cls = string.rsplit(".", 1)
|
117 |
-
if reload:
|
118 |
-
module_imp = importlib.import_module(module)
|
119 |
-
importlib.reload(module_imp)
|
120 |
-
return getattr(importlib.import_module(module, package=None), cls)
|
121 |
-
|
122 |
-
|
123 |
-
def check_istarget(name, para_list):
|
124 |
-
"""
|
125 |
-
name: full name of source para
|
126 |
-
para_list: partial name of target para
|
127 |
-
"""
|
128 |
-
istarget=False
|
129 |
-
for para in para_list:
|
130 |
-
if para in name:
|
131 |
-
return True
|
132 |
-
return istarget
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lvdm/utils/dist_utils.py
DELETED
@@ -1,19 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.distributed as dist
|
3 |
-
|
4 |
-
def setup_dist(local_rank):
|
5 |
-
if dist.is_initialized():
|
6 |
-
return
|
7 |
-
torch.cuda.set_device(local_rank)
|
8 |
-
torch.distributed.init_process_group(
|
9 |
-
'nccl',
|
10 |
-
init_method='env://'
|
11 |
-
)
|
12 |
-
|
13 |
-
def gather_data(data, return_np=True):
|
14 |
-
''' gather data from multiple processes to one list '''
|
15 |
-
data_list = [torch.zeros_like(data) for _ in range(dist.get_world_size())]
|
16 |
-
dist.all_gather(data_list, data) # gather not supported with NCCL
|
17 |
-
if return_np:
|
18 |
-
data_list = [data.cpu().numpy() for data in data_list]
|
19 |
-
return data_list
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lvdm/utils/saving_utils.py
DELETED
@@ -1,269 +0,0 @@
|
|
1 |
-
import numpy as np
|
2 |
-
import cv2
|
3 |
-
import os
|
4 |
-
import time
|
5 |
-
import imageio
|
6 |
-
from tqdm import tqdm
|
7 |
-
from PIL import Image
|
8 |
-
import os
|
9 |
-
import sys
|
10 |
-
sys.path.insert(1, os.path.join(sys.path[0], '..'))
|
11 |
-
import torch
|
12 |
-
import torchvision
|
13 |
-
from torchvision.utils import make_grid
|
14 |
-
from torch import Tensor
|
15 |
-
from torchvision.transforms.functional import to_tensor
|
16 |
-
|
17 |
-
|
18 |
-
def tensor_to_mp4(video, savepath, fps, rescale=True, nrow=None):
|
19 |
-
"""
|
20 |
-
video: torch.Tensor, b,c,t,h,w, 0-1
|
21 |
-
if -1~1, enable rescale=True
|
22 |
-
"""
|
23 |
-
n = video.shape[0]
|
24 |
-
video = video.permute(2, 0, 1, 3, 4) # t,n,c,h,w
|
25 |
-
nrow = int(np.sqrt(n)) if nrow is None else nrow
|
26 |
-
frame_grids = [torchvision.utils.make_grid(framesheet, nrow=nrow) for framesheet in video] # [3, grid_h, grid_w]
|
27 |
-
grid = torch.stack(frame_grids, dim=0) # stack in temporal dim [T, 3, grid_h, grid_w]
|
28 |
-
grid = torch.clamp(grid.float(), -1., 1.)
|
29 |
-
if rescale:
|
30 |
-
grid = (grid + 1.0) / 2.0
|
31 |
-
grid = (grid * 255).to(torch.uint8).permute(0, 2, 3, 1) # [T, 3, grid_h, grid_w] -> [T, grid_h, grid_w, 3]
|
32 |
-
#print(f'Save video to {savepath}')
|
33 |
-
torchvision.io.write_video(savepath, grid, fps=fps, video_codec='h264', options={'crf': '10'})
|
34 |
-
|
35 |
-
# ----------------------------------------------------------------------------------------------
|
36 |
-
def savenp2sheet(imgs, savepath, nrow=None):
|
37 |
-
""" save multiple imgs (in numpy array type) to a img sheet.
|
38 |
-
img sheet is one row.
|
39 |
-
|
40 |
-
imgs:
|
41 |
-
np array of size [N, H, W, 3] or List[array] with array size = [H,W,3]
|
42 |
-
"""
|
43 |
-
if imgs.ndim == 4:
|
44 |
-
img_list = [imgs[i] for i in range(imgs.shape[0])]
|
45 |
-
imgs = img_list
|
46 |
-
|
47 |
-
imgs_new = []
|
48 |
-
for i, img in enumerate(imgs):
|
49 |
-
if img.ndim == 3 and img.shape[0] == 3:
|
50 |
-
img = np.transpose(img,(1,2,0))
|
51 |
-
|
52 |
-
assert(img.ndim == 3 and img.shape[-1] == 3), img.shape # h,w,3
|
53 |
-
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
|
54 |
-
imgs_new.append(img)
|
55 |
-
n = len(imgs)
|
56 |
-
if nrow is not None:
|
57 |
-
n_cols = nrow
|
58 |
-
else:
|
59 |
-
n_cols=int(n**0.5)
|
60 |
-
n_rows=int(np.ceil(n/n_cols))
|
61 |
-
print(n_cols)
|
62 |
-
print(n_rows)
|
63 |
-
|
64 |
-
imgsheet = cv2.vconcat([cv2.hconcat(imgs_new[i*n_cols:(i+1)*n_cols]) for i in range(n_rows)])
|
65 |
-
cv2.imwrite(savepath, imgsheet)
|
66 |
-
print(f'saved in {savepath}')
|
67 |
-
|
68 |
-
# ----------------------------------------------------------------------------------------------
|
69 |
-
def save_np_to_img(img, path, norm=True):
|
70 |
-
if norm:
|
71 |
-
img = (img + 1) / 2 * 255
|
72 |
-
img = img.astype(np.uint8)
|
73 |
-
image = Image.fromarray(img)
|
74 |
-
image.save(path, q=95)
|
75 |
-
|
76 |
-
# ----------------------------------------------------------------------------------------------
|
77 |
-
def npz_to_imgsheet_5d(data_path, res_dir, nrow=None,):
|
78 |
-
if isinstance(data_path, str):
|
79 |
-
imgs = np.load(data_path)['arr_0'] # NTHWC
|
80 |
-
elif isinstance(data_path, np.ndarray):
|
81 |
-
imgs = data_path
|
82 |
-
else:
|
83 |
-
raise Exception
|
84 |
-
|
85 |
-
if os.path.isdir(res_dir):
|
86 |
-
res_path = os.path.join(res_dir, f'samples.jpg')
|
87 |
-
else:
|
88 |
-
assert(res_dir.endswith('.jpg'))
|
89 |
-
res_path = res_dir
|
90 |
-
imgs = np.concatenate([imgs[i] for i in range(imgs.shape[0])], axis=0)
|
91 |
-
savenp2sheet(imgs, res_path, nrow=nrow)
|
92 |
-
|
93 |
-
# ----------------------------------------------------------------------------------------------
|
94 |
-
def npz_to_imgsheet_4d(data_path, res_path, nrow=None,):
|
95 |
-
if isinstance(data_path, str):
|
96 |
-
imgs = np.load(data_path)['arr_0'] # NHWC
|
97 |
-
elif isinstance(data_path, np.ndarray):
|
98 |
-
imgs = data_path
|
99 |
-
else:
|
100 |
-
raise Exception
|
101 |
-
print(imgs.shape)
|
102 |
-
savenp2sheet(imgs, res_path, nrow=nrow)
|
103 |
-
|
104 |
-
|
105 |
-
# ----------------------------------------------------------------------------------------------
|
106 |
-
def tensor_to_imgsheet(tensor, save_path):
|
107 |
-
"""
|
108 |
-
save a batch of videos in one image sheet with shape of [batch_size * num_frames].
|
109 |
-
data: [b,c,t,h,w]
|
110 |
-
"""
|
111 |
-
assert(tensor.dim() == 5)
|
112 |
-
b,c,t,h,w = tensor.shape
|
113 |
-
imgs = [tensor[bi,:,ti, :, :] for bi in range(b) for ti in range(t)]
|
114 |
-
torchvision.utils.save_image(imgs, save_path, normalize=True, nrow=t)
|
115 |
-
|
116 |
-
|
117 |
-
# ----------------------------------------------------------------------------------------------
|
118 |
-
def npz_to_frames(data_path, res_dir, norm, num_frames=None, num_samples=None):
|
119 |
-
start = time.time()
|
120 |
-
arr = np.load(data_path)
|
121 |
-
imgs = arr['arr_0'] # [N, T, H, W, 3]
|
122 |
-
print('original data shape: ', imgs.shape)
|
123 |
-
|
124 |
-
if num_samples is not None:
|
125 |
-
imgs = imgs[:num_samples, :, :, :, :]
|
126 |
-
print('after sample selection: ', imgs.shape)
|
127 |
-
|
128 |
-
if num_frames is not None:
|
129 |
-
imgs = imgs[:, :num_frames, :, :, :]
|
130 |
-
print('after frame selection: ', imgs.shape)
|
131 |
-
|
132 |
-
for vid in tqdm(range(imgs.shape[0]), desc='Video'):
|
133 |
-
video_dir = os.path.join(res_dir, f'video{vid:04d}')
|
134 |
-
os.makedirs(video_dir, exist_ok=True)
|
135 |
-
for fid in range(imgs.shape[1]):
|
136 |
-
frame = imgs[vid, fid, :, :, :] #HW3
|
137 |
-
save_np_to_img(frame, os.path.join(video_dir, f'frame{fid:04d}.jpg'), norm=norm)
|
138 |
-
print('Finish')
|
139 |
-
print(f'Total time = {time.time()- start}')
|
140 |
-
|
141 |
-
# ----------------------------------------------------------------------------------------------
|
142 |
-
def npz_to_gifs(data_path, res_dir, duration=0.2, start_idx=0, num_videos=None, mode='gif'):
|
143 |
-
os.makedirs(res_dir, exist_ok=True)
|
144 |
-
if isinstance(data_path, str):
|
145 |
-
imgs = np.load(data_path)['arr_0'] # NTHWC
|
146 |
-
elif isinstance(data_path, np.ndarray):
|
147 |
-
imgs = data_path
|
148 |
-
else:
|
149 |
-
raise Exception
|
150 |
-
|
151 |
-
for i in range(imgs.shape[0]):
|
152 |
-
frames = [imgs[i,j,:,:,:] for j in range(imgs[i].shape[0])] # [(h,w,3)]
|
153 |
-
if mode == 'gif':
|
154 |
-
imageio.mimwrite(os.path.join(res_dir, f'samples_{start_idx+i}.gif'), frames, format='GIF', duration=duration)
|
155 |
-
elif mode == 'mp4':
|
156 |
-
frames = [torch.from_numpy(frame) for frame in frames]
|
157 |
-
frames = torch.stack(frames, dim=0).to(torch.uint8) # [T, H, W, C]
|
158 |
-
torchvision.io.write_video(os.path.join(res_dir, f'samples_{start_idx+i}.mp4'),
|
159 |
-
frames, fps=0.5, video_codec='h264', options={'crf': '10'})
|
160 |
-
if i+ 1 == num_videos:
|
161 |
-
break
|
162 |
-
|
163 |
-
# ----------------------------------------------------------------------------------------------
|
164 |
-
def fill_with_black_squares(video, desired_len: int) -> Tensor:
|
165 |
-
if len(video) >= desired_len:
|
166 |
-
return video
|
167 |
-
|
168 |
-
return torch.cat([
|
169 |
-
video,
|
170 |
-
torch.zeros_like(video[0]).unsqueeze(0).repeat(desired_len - len(video), 1, 1, 1),
|
171 |
-
], dim=0)
|
172 |
-
|
173 |
-
# ----------------------------------------------------------------------------------------------
|
174 |
-
def load_num_videos(data_path, num_videos):
|
175 |
-
# data_path can be either data_path of np array
|
176 |
-
if isinstance(data_path, str):
|
177 |
-
videos = np.load(data_path)['arr_0'] # NTHWC
|
178 |
-
elif isinstance(data_path, np.ndarray):
|
179 |
-
videos = data_path
|
180 |
-
else:
|
181 |
-
raise Exception
|
182 |
-
|
183 |
-
if num_videos is not None:
|
184 |
-
videos = videos[:num_videos, :, :, :, :]
|
185 |
-
return videos
|
186 |
-
|
187 |
-
# ----------------------------------------------------------------------------------------------
|
188 |
-
def npz_to_video_grid(data_path, out_path, num_frames=None, fps=8, num_videos=None, nrow=None, verbose=True):
|
189 |
-
if isinstance(data_path, str):
|
190 |
-
videos = load_num_videos(data_path, num_videos)
|
191 |
-
elif isinstance(data_path, np.ndarray):
|
192 |
-
videos = data_path
|
193 |
-
else:
|
194 |
-
raise Exception
|
195 |
-
n,t,h,w,c = videos.shape
|
196 |
-
|
197 |
-
videos_th = []
|
198 |
-
for i in range(n):
|
199 |
-
video = videos[i, :,:,:,:]
|
200 |
-
images = [video[j, :,:,:] for j in range(t)]
|
201 |
-
images = [to_tensor(img) for img in images]
|
202 |
-
video = torch.stack(images)
|
203 |
-
videos_th.append(video)
|
204 |
-
|
205 |
-
if num_frames is None:
|
206 |
-
num_frames = videos.shape[1]
|
207 |
-
if verbose:
|
208 |
-
videos = [fill_with_black_squares(v, num_frames) for v in tqdm(videos_th, desc='Adding empty frames')] # NTCHW
|
209 |
-
else:
|
210 |
-
videos = [fill_with_black_squares(v, num_frames) for v in videos_th] # NTCHW
|
211 |
-
|
212 |
-
frame_grids = torch.stack(videos).permute(1, 0, 2, 3, 4) # [T, N, C, H, W]
|
213 |
-
if nrow is None:
|
214 |
-
nrow = int(np.ceil(np.sqrt(n)))
|
215 |
-
if verbose:
|
216 |
-
frame_grids = [make_grid(fs, nrow=nrow) for fs in tqdm(frame_grids, desc='Making grids')]
|
217 |
-
else:
|
218 |
-
frame_grids = [make_grid(fs, nrow=nrow) for fs in frame_grids]
|
219 |
-
|
220 |
-
if os.path.dirname(out_path) != "":
|
221 |
-
os.makedirs(os.path.dirname(out_path), exist_ok=True)
|
222 |
-
frame_grids = (torch.stack(frame_grids) * 255).to(torch.uint8).permute(0, 2, 3, 1) # [T, H, W, C]
|
223 |
-
torchvision.io.write_video(out_path, frame_grids, fps=fps, video_codec='h264', options={'crf': '10'})
|
224 |
-
|
225 |
-
# ----------------------------------------------------------------------------------------------
|
226 |
-
def npz_to_gif_grid(data_path, out_path, n_cols=None, num_videos=20):
|
227 |
-
arr = np.load(data_path)
|
228 |
-
imgs = arr['arr_0'] # [N, T, H, W, 3]
|
229 |
-
imgs = imgs[:num_videos]
|
230 |
-
n, t, h, w, c = imgs.shape
|
231 |
-
assert(n == num_videos)
|
232 |
-
n_cols = n_cols if n_cols else imgs.shape[0]
|
233 |
-
n_rows = np.ceil(imgs.shape[0] / n_cols).astype(np.int8)
|
234 |
-
H, W = h * n_rows, w * n_cols
|
235 |
-
grid = np.zeros((t, H, W, c), dtype=np.uint8)
|
236 |
-
|
237 |
-
for i in range(n_rows):
|
238 |
-
for j in range(n_cols):
|
239 |
-
if i*n_cols+j < imgs.shape[0]:
|
240 |
-
grid[:, i*h:(i+1)*h, j*w:(j+1)*w, :] = imgs[i*n_cols+j, :, :, :, :]
|
241 |
-
|
242 |
-
videos = [grid[i] for i in range(grid.shape[0])] # grid: TH'W'C
|
243 |
-
imageio.mimwrite(out_path, videos, format='GIF', duration=0.5,palettesize=256)
|
244 |
-
|
245 |
-
|
246 |
-
# ----------------------------------------------------------------------------------------------
|
247 |
-
def torch_to_video_grid(videos, out_path, num_frames, fps, num_videos=None, nrow=None, verbose=True):
|
248 |
-
"""
|
249 |
-
videos: -1 ~ 1, torch.Tensor, BCTHW
|
250 |
-
"""
|
251 |
-
n,t,h,w,c = videos.shape
|
252 |
-
videos_th = [videos[i, ...] for i in range(n)]
|
253 |
-
if verbose:
|
254 |
-
videos = [fill_with_black_squares(v, num_frames) for v in tqdm(videos_th, desc='Adding empty frames')] # NTCHW
|
255 |
-
else:
|
256 |
-
videos = [fill_with_black_squares(v, num_frames) for v in videos_th] # NTCHW
|
257 |
-
|
258 |
-
frame_grids = torch.stack(videos).permute(1, 0, 2, 3, 4) # [T, N, C, H, W]
|
259 |
-
if nrow is None:
|
260 |
-
nrow = int(np.ceil(np.sqrt(n)))
|
261 |
-
if verbose:
|
262 |
-
frame_grids = [make_grid(fs, nrow=nrow) for fs in tqdm(frame_grids, desc='Making grids')]
|
263 |
-
else:
|
264 |
-
frame_grids = [make_grid(fs, nrow=nrow) for fs in frame_grids]
|
265 |
-
|
266 |
-
if os.path.dirname(out_path) != "":
|
267 |
-
os.makedirs(os.path.dirname(out_path), exist_ok=True)
|
268 |
-
frame_grids = ((torch.stack(frame_grids) + 1) / 2 * 255).to(torch.uint8).permute(0, 2, 3, 1) # [T, H, W, C]
|
269 |
-
torchvision.io.write_video(out_path, frame_grids, fps=fps, video_codec='h264', options={'crf': '10'})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
prompts/i2v_prompts/horse.png
ADDED
prompts/i2v_prompts/seashore.png
ADDED
prompts/i2v_prompts/test_prompts.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
horses are walking on the grassland
|
2 |
+
a boy and a girl are talking on the seashore
|
prompts/test_prompts.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
A tiger walks in the forest, photorealistic, 4k, high definition
|
2 |
+
A boat moving on the sea, flowers and grassland on the shore
|
requirements.txt
CHANGED
@@ -16,7 +16,8 @@ transformers==4.25.1
|
|
16 |
moviepy
|
17 |
av
|
18 |
xformers
|
19 |
-
gradio
|
20 |
-
gradio-client==0.1.2
|
21 |
timm
|
22 |
-
|
|
|
|
|
|
16 |
moviepy
|
17 |
av
|
18 |
xformers
|
19 |
+
gradio
|
|
|
20 |
timm
|
21 |
+
scikit-learn
|
22 |
+
open_clip_torch
|
23 |
+
kornia
|
sample_adapter.sh
DELETED
@@ -1,22 +0,0 @@
|
|
1 |
-
PROMPT="An ostrich walking in the desert, photorealistic, 4k"
|
2 |
-
VIDEO="input/flamingo.mp4"
|
3 |
-
OUTDIR="results/"
|
4 |
-
|
5 |
-
NAME="video_adapter"
|
6 |
-
CONFIG_PATH="models/adapter_t2v_depth/model_config.yaml"
|
7 |
-
BASE_PATH="models/base_t2v/model.ckpt"
|
8 |
-
ADAPTER_PATH="models/adapter_t2v_depth/adapter.pth"
|
9 |
-
|
10 |
-
python scripts/sample_text2video_adapter.py \
|
11 |
-
--seed 123 \
|
12 |
-
--ckpt_path $BASE_PATH \
|
13 |
-
--adapter_ckpt $ADAPTER_PATH \
|
14 |
-
--base $CONFIG_PATH \
|
15 |
-
--savedir $OUTDIR/$NAME \
|
16 |
-
--bs 1 --height 256 --width 256 \
|
17 |
-
--frame_stride -1 \
|
18 |
-
--unconditional_guidance_scale 15.0 \
|
19 |
-
--ddim_steps 50 \
|
20 |
-
--ddim_eta 1.0 \
|
21 |
-
--prompt "$PROMPT" \
|
22 |
-
--video $VIDEO
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sample_text2video.sh
DELETED
@@ -1,16 +0,0 @@
|
|
1 |
-
|
2 |
-
PROMPT="astronaut riding a horse" # OR: PROMPT="input/prompts.txt" for sampling multiple prompts
|
3 |
-
OUTDIR="results/"
|
4 |
-
|
5 |
-
BASE_PATH="models/base_t2v/model.ckpt"
|
6 |
-
CONFIG_PATH="models/base_t2v/model_config.yaml"
|
7 |
-
|
8 |
-
python scripts/sample_text2video.py \
|
9 |
-
--ckpt_path $BASE_PATH \
|
10 |
-
--config_path $CONFIG_PATH \
|
11 |
-
--prompt "$PROMPT" \
|
12 |
-
--save_dir $OUTDIR \
|
13 |
-
--n_samples 1 \
|
14 |
-
--batch_size 1 \
|
15 |
-
--seed 1000 \
|
16 |
-
--show_denoising_progress
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|