Mochi1 / app.py
Haoxin Chen
update ui
cdeee13
raw
history blame
3.05 kB
import os
import sys
import gradio as gr
# from demo_test import Text2Video, Image2Video
from t2v_test import Text2Video
sys.path.insert(1, os.path.join(sys.path[0], 'lvdm'))
t2v_examples = [
['an elephant is walking under the sea, 4K, high definition',50, 12,1, 16],
['an astronaut riding a horse in outer space',25,12,1,16],
['a monkey is playing a piano',25,12,1,16],
['A fire is burning on a candle',25,12,1,16],
['a horse is drinking in the river',25,12,1,16],
['Robot dancing in times square',25,12,1,16],
]
def videocrafter_demo(result_dir='./tmp/'):
text2video = Text2Video(result_dir)
with gr.Blocks(analytics_enabled=False) as videocrafter_iface:
gr.Markdown("<div align='center'> <h2> VideoCrafter2: Overcoming Data Limitations for High-Quality Video Diffusion Models </span> </h2> \
<a style='font-size:18px;color: #000000' href='https://github.com/AILab-CVC/VideoCrafter'> Github </div>")
gr.Markdown("<b> Note: This is the low-resolution version of VideoCrafter2. We will release a high-resolution version later.</b>")
#######t2v#######
with gr.Tab(label="Text2Video"):
with gr.Column():
with gr.Row().style(equal_height=False):
with gr.Column():
input_text = gr.Text(label='Prompts')
with gr.Row():
steps = gr.Slider(minimum=1, maximum=60, step=1, elem_id=f"steps", label="Sampling steps", value=50)
eta = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, label='ETA', value=1.0, elem_id="eta")
with gr.Row():
cfg_scale = gr.Slider(minimum=1.0, maximum=30.0, step=0.5, label='CFG Scale', value=12.0, elem_id="cfg_scale")
fps = gr.Slider(minimum=4, maximum=32, step=1, label='fps', value=16, elem_id="fps")
send_btn = gr.Button("Send")
with gr.Tab(label='result'):
with gr.Row():
output_video_1 = gr.Video().style(width=512)
gr.Examples(examples=t2v_examples,
inputs=[input_text,steps,cfg_scale,eta],
outputs=[output_video_1],
fn=text2video.get_prompt,
cache_examples=False)
#cache_examples=os.getenv('SYSTEM') == 'spaces')
send_btn.click(
fn=text2video.get_prompt,
inputs=[input_text,steps,cfg_scale,eta,fps],
outputs=[output_video_1],
)
return videocrafter_iface
if __name__ == "__main__":
result_dir = os.path.join('./', 'results')
videocrafter_iface = videocrafter_demo(result_dir)
videocrafter_iface.queue(concurrency_count=1, max_size=10)
videocrafter_iface.launch()
# videocrafter_iface.launch(server_name='0.0.0.0', server_port=80)