File size: 6,007 Bytes
80e9ff1 7122957 80e9ff1 b0dd1c7 80e9ff1 7122957 80e9ff1 1b485d1 80e9ff1 1b485d1 80e9ff1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
import tensorflow as tf
from PIL import Image
from tensorflow import keras
import numpy as np
import os
import random
import logging
from tensorflow.keras.preprocessing import image as keras_image
from huggingface_hub import from_pretrained_keras
from openai import AzureOpenAI
import gradio as gr
from zipfile import ZipFile
logging.basicConfig(level=logging.INFO)
class DiseaseDetectionApp:
def __init__(self):
self.class_names =['Normal', 'Tuberculosis']
self.model =tf.keras.models.load_model("chest_xray_tuberclosis_prediction_model.keras")
self.client=AzureOpenAI()
def predict_disease(self, image_path):
"""
Predict the disease present in the X-Ray image.
Args:
- image_data: PIL image data
Returns:
- predicted_disease: string
"""
try:
# Load the image file, resizing it to the dimensions expected by the model
img = keras_image.load_img(image_path, target_size=(256, 256)) # Adjust target_size according to your model's expected input dimensions
# Convert the image to a numpy array
img_array = keras_image.img_to_array(img)
# Add an additional dimension to the array: (1, height, width, channels)
img_array = tf.expand_dims(img_array, 0) # Model expects a batch of images, but we're only passing a single image
# print(img_array)
# Make predictions
predictions = self.model.predict(img_array)
# Extract the predicted class and confidence
predict_class =self.class_names[np.argmax(predictions[0])]
confidence = round(100 * np.max(predictions[0]), 2)
return predict_class
except Exception as e:
logging.error(f"Error predicting disease: {str(e)}")
return None
def classify_disease(self,image_path):
disease_name=self.predict_disease(image_path)
print(disease_name)
if disease_name=="Tuberculosis":
conversation = [
{"role": "system", "content": "You are a medical assistant"},
{"role": "user", "content": f""" your task describe(classify) about the given disease as a summary only in 3 lines.
```{disease_name}```
"""}
]
# Generate completion using ChatGPT model
response = self.client.chat.completions.create(
model="GPT-3",
messages=conversation,
temperature=0,
max_tokens=1000
)
# Get the generated topics message
result = response.choices[0].message.content
return disease_name,result
elif disease_name=="Normal":
result="No problem in your xray image"
return disease_name,result
def unzip_image_data(self,filespath):
"""
Unzips an image dataset into a specified directory.
Returns:
str: The path to the directory containing the extracted image files.
"""
try:
with ZipFile(filespath,"r") as extract:
directory_path = random.randrange(100)
extract.extractall(f"{directory_path}")
return f"{directory_path}"
except Exception as e:
logging.error(f"An error occurred during extraction: {e}")
return ""
def example_images(self,filespath):
"""
Unzips the image dataset and generates a list of paths to the individual image files and use image for showing example
Returns:
List[str]: A list of file paths to each image in the dataset.
"""
image_dataset_folder = self.unzip_image_data(filespath)
image_extensions = ['.jpg', '.jpeg', '.png', '.gif', '.bmp', '.tiff', '.webp']
image_count = len([name for name in os.listdir(image_dataset_folder) if os.path.isfile(os.path.join(image_dataset_folder, name)) and os.path.splitext(name)[1].lower() in image_extensions])
example=[]
for i in range(image_count):
for name in os.listdir(image_dataset_folder):
path=(os.path.join(os.path.dirname(image_dataset_folder),os.path.join(image_dataset_folder,name)))
example.append(path)
return example
def get_example_image(self):
normal_image="Normal_dataset.zip"
tuberclosis_image="Tuberculosis_dataset.zip"
normal_image_unziped=self.example_images(normal_image)
tuberclosis_image_unziped=self.example_images(tuberclosis_image)
return normal_image_unziped,tuberclosis_image_unziped
def gradio_interface(self):
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.HTML("""<center><h1>Tuberculosis Disease Detection</h1></center>""")
normal_image,tuberclosis_image=self.get_example_image()
with gr.Row():
input_image =gr.Image(type="filepath",sources="upload")
with gr.Column():
output=gr.Label(label="Disease Name")
with gr.Row():
classify_disease_=gr.Textbox(label="About disease")
with gr.Row():
button =gr.Button(value="Detect The Disease")
button.click(self.classify_disease,[input_image],[output,classify_disease_])
gr.Examples(
examples=normal_image,
label="Normal X-ray Images",
inputs=[input_image],
outputs=[output,classify_disease_],
fn=self.classify_disease,
examples_per_page=5,
cache_examples=False)
gr.Examples(
examples=tuberclosis_image,
label="Tuberclosis X-ray Images",
inputs=[input_image],
outputs=[output,classify_disease_],
examples_per_page=5,
fn=self.classify_disease,
cache_examples=False)
demo.launch(debug=True)
if __name__ == "__main__":
app = DiseaseDetectionApp()
result=app.gradio_interface()
|