Spaces:
Sleeping
Sleeping
File size: 3,485 Bytes
3a05b97 ca6370e 3a05b97 ca6370e 3a05b97 ca6370e 3a05b97 ca6370e 3a05b97 ca6370e 3a05b97 ca6370e 3a05b97 ca6370e 3a05b97 ca6370e 3a05b97 ca6370e 3a05b97 ca6370e 3a05b97 5dea20f 3a05b97 ca6370e 6372d8f 3a05b97 ca6370e 3a05b97 ca6370e 3a05b97 ca6370e 3a05b97 ca6370e 3a05b97 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 |
import gradio as gr
import os
import time
from langchain.document_loaders import OnlinePDFLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain.llms import OpenAI
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import Chroma
from langchain.chains import ConversationalRetrievalChain
def loading_pdf():
return "Loading..."
def pdf_changes(pdf_doc, open_ai_key):
if openai_key is not None:
os.environ['OPENAI_API_KEY'] = open_ai_key
loader = OnlinePDFLoader(pdf_doc.name)
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
texts = text_splitter.split_documents(documents)
embeddings = OpenAIEmbeddings()
db = Chroma.from_documents(texts, embeddings)
retriever = db.as_retriever()
global qa
qa = ConversationalRetrievalChain.from_llm(
llm=OpenAI(temperature=0.5),
retriever=retriever,
return_source_documents=False)
return "Ready"
else:
return "You forgot OpenAI API key"
def add_text(history, text):
history = history + [(text, None)]
return history, ""
def bot(history):
response = infer(history[-1][0], history)
history[-1][1] = ""
for character in response:
history[-1][1] += character
time.sleep(0.05)
yield history
def infer(question, history):
res = []
for human, ai in history[:-1]:
pair = (human, ai)
res.append(pair)
chat_history = res
#print(chat_history)
query = question
result = qa({"question": query, "chat_history": chat_history})
#print(result)
return result["answer"]
css="""
#col-container {max-width: 700px; margin-left: auto; margin-right: auto;}
"""
title = """
<div style="text-align: center;max-width: 700px;">
<h1>LangChain ChatBot</h1>
<p style="text-align: center;">Upload a PDF, click the "Load PDF to LangChain" button, <br /></p>
<a style="display:inline-block; margin-left: 1em" href="https://www.adople.com"><img src="https://lh6.googleusercontent.com/FQJXx8B6Tbq7SvSE3wvJyXusFZxKcsY92eQaPnZj5pIDdXHVjs10tXXBqWcF0BgC_riSFcje2qUd-XWaiaJByI6dMOkEFdAtpeG7KK8xh7nH8KE3GfSOMrySKPVWXGdEvg=w1280" alt="Adople AI"></a>
</div>
"""
with gr.Blocks(css=css,theme=gr.themes.Soft()) as demo:
with gr.Column(elem_id="col-container"):
gr.HTML(title)
with gr.Column():
openai_key = gr.Textbox(label="You OpenAI API key", type="password")
pdf_doc = gr.File(label="Load a pdf", file_types=['.pdf'], type="file")
with gr.Row():
langchain_status = gr.Textbox(label="Status", placeholder="", interactive=False)
load_pdf = gr.Button("Load pdf to langchain")
chatbot = gr.Chatbot([], elem_id="chatbot").style(height=350)
question = gr.Textbox(label="Question", placeholder="Type your question and hit Enter ")
submit_btn = gr.Button("Send Message")
load_pdf.click(loading_pdf, None, langchain_status, queue=False)
load_pdf.click(pdf_changes, inputs=[pdf_doc, openai_key], outputs=[langchain_status], queue=False)
question.submit(add_text, [chatbot, question], [chatbot, question]).then(
bot, chatbot, chatbot
)
submit_btn.click(add_text, [chatbot, question], [chatbot, question]).then(
bot, chatbot, chatbot)
demo.launch() |