File size: 3,462 Bytes
3a05b97
ca6370e
 
3a05b97
 
 
 
 
 
ca6370e
3a05b97
ca6370e
3a05b97
ca6370e
3a05b97
ca6370e
3a05b97
 
 
 
ca6370e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a05b97
 
 
 
 
 
ca6370e
 
 
 
 
 
 
 
3a05b97
ca6370e
3a05b97
ca6370e
 
 
 
 
 
 
3a05b97
ca6370e
 
 
3a05b97
 
 
 
 
 
 
5dea20f
 
 
3a05b97
 
 
 
ca6370e
 
3a05b97
 
 
ca6370e
3a05b97
 
 
ca6370e
3a05b97
 
 
ca6370e
 
 
3a05b97
 
 
 
ca6370e
3a05b97
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import gradio as gr
import os
import time

from langchain.document_loaders import OnlinePDFLoader

from langchain.text_splitter import CharacterTextSplitter


from langchain.llms import OpenAI

from langchain.embeddings import OpenAIEmbeddings

from langchain.vectorstores import Chroma

from langchain.chains import ConversationalRetrievalChain

def loading_pdf():
    return "Loading..."

def pdf_changes(pdf_doc, open_ai_key):
    if openai_key is not None:
        os.environ['OPENAI_API_KEY'] = open_ai_key
        loader = OnlinePDFLoader(pdf_doc.name)
        documents = loader.load()
        text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
        texts = text_splitter.split_documents(documents)
        embeddings = OpenAIEmbeddings()
        db = Chroma.from_documents(texts, embeddings)
        retriever = db.as_retriever()
        global qa 
        qa = ConversationalRetrievalChain.from_llm(
            llm=OpenAI(temperature=0.5), 
            retriever=retriever, 
            return_source_documents=False)
        return "Ready"
    else:
        return "You forgot OpenAI API key"

def add_text(history, text):
    history = history + [(text, None)]
    return history, ""

def bot(history):
    response = infer(history[-1][0], history)
    history[-1][1] = ""
    
    for character in response:     
        history[-1][1] += character
        time.sleep(0.05)
        yield history
    

def infer(question, history):
    
    res = []
    for human, ai in history[:-1]:
        pair = (human, ai)
        res.append(pair)
    
    chat_history = res
    #print(chat_history)
    query = question
    result = qa({"question": query, "chat_history": chat_history})
    #print(result)
    return result["answer"]

css="""
#col-container {max-width: 700px; margin-left: auto; margin-right: auto;}
"""

title = """
<div style="text-align: center;max-width: 700px;">
    <h1>LangChain ChatBot</h1>
    <p style="text-align: center;">Upload a PDF, click the "Load PDF to LangChain" button, <br /></p>
    <a style="display:inline-block; margin-left: 1em" href="https://www.adople.com"><img src="https://lh6.googleusercontent.com/FQJXx8B6Tbq7SvSE3wvJyXusFZxKcsY92eQaPnZj5pIDdXHVjs10tXXBqWcF0BgC_riSFcje2qUd-XWaiaJByI6dMOkEFdAtpeG7KK8xh7nH8KE3GfSOMrySKPVWXGdEvg=w1280" alt="Adople AI"></a>
</div>
"""



with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.HTML(title)
        with gr.Column():
            openai_key = gr.Textbox(label="You OpenAI API key", type="password")
            pdf_doc = gr.File(label="Load a pdf", file_types=['.pdf'], type="file")
            with gr.Row():
                langchain_status = gr.Textbox(label="Status", placeholder="", interactive=False)
                load_pdf = gr.Button("Load pdf to langchain")
        
        chatbot = gr.Chatbot([], elem_id="chatbot").style(height=350)
        question = gr.Textbox(label="Question", placeholder="Type your question and hit Enter ")
        submit_btn = gr.Button("Send Message")
    load_pdf.click(loading_pdf, None, langchain_status, queue=False)    
    load_pdf.click(pdf_changes, inputs=[pdf_doc, openai_key], outputs=[langchain_status], queue=False)
    question.submit(add_text, [chatbot, question], [chatbot, question]).then(
        bot, chatbot, chatbot
    )
    submit_btn.click(add_text, [chatbot, question], [chatbot, question]).then(
        bot, chatbot, chatbot)

demo.launch()