import random import uuid import json from transformers import AutoTokenizer, AutoModelForCausalLM # Load the tokenizer and model without FlashAttention2 tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3.5-vision-instruct") # Disable FlashAttention2 by forcing default attention config = { 'attn_implementation': 'default' } model = AutoModelForCausalLM.from_pretrained( "microsoft/Phi-3.5-vision-instruct", trust_remote_code=True, **config ) # Function to generate text using the model def generate_text(prompt): inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate(inputs['input_ids'], max_length=150) return tokenizer.decode(outputs[0], skip_special_tokens=True) # Lists for random selection interest_list = ["networking", "dealMaking"] personal_interest_list = [ "Drawing", "Cooking", "Foodie", "Board Gaming", "Card games", "Checkers", "Chess", "PC gaming", "Puzzle solving", "Video gaming", "Reading", "Science experiments", "Magic and illusion", "Stand-up comedy", "Walking", "Beer brewing", "Gourmet food exploration", "Mixology", "Wine tasting" ] professional_interest_list = [ "Building a customer-centric culture", "Community Building", "Community Management", "Delivering exceptional customer service", "Ensuring product/service quality", "Handling customer complaints and feedback" ] # Function to generate random profile with intelligent education/professional details def generate_intelligent_profile(): # Randomly select interests and location profile = { "_id": str(uuid.uuid4()), # Generate random ID "latitude": random.uniform(-90, 90), # Random latitude "longitude": random.uniform(-180, 180), # Random longitude "interest": random.sample(interest_list, random.randint(1, len(interest_list))), # Random interests "personalInterest": random.sample(personal_interest_list, random.randint(3, 7)), # Random personal interests "professionalInterest": random.sample(professional_interest_list, random.randint(3, 5)) # Random professional interests } # Generate intelligent educational details using the model education_prompt = "Generate an educational background for a professional profile with relevant qualifications." profile["educationalDetails"] = [generate_text(education_prompt)] # Generate intelligent professional details using the model professional_prompt = "Generate a professional career summary for a profile with achievements and roles." profile["professionalDetails"] = [generate_text(professional_prompt)] return profile # Function to generate multiple profiles def generate_profiles(num_profiles=5): profiles = [generate_intelligent_profile() for _ in range(num_profiles)] return {"data": profiles} # Generate and print random intelligent profiles generated_profiles = generate_profiles(3) print(json.dumps(generated_profiles, indent=4))