52Hz's picture
Update app.py
5422deb
raw
history blame
1.79 kB
import os
import gradio as gr
from PIL import Image
import torch
os.system(
'wget https://github.com/FanChiMao/CMFNet/releases/download/v0.0/deraindrop_DeRainDrop_CMFNet.pth -P experiments/pretrained_models')
def inference(img):
os.system('mkdir test')
basewidth = 512
wpercent = (basewidth / float(img.size[0]))
hsize = int((float(img.size[1]) * float(wpercent)))
img = img.resize((basewidth, hsize), Image.BILINEAR)
img.save("test/1.png", "PNG")
os.system(
'python main_test_CMFNet.py --input_dir test --weights experiments/pretrained_models/deraindrop_DeRainDrop_CMFNet.pth')
return 'results/1.png'
title = "Compound Multi-branch Feature Fusion for Image Restoration (Deraindrop)"
description = "Gradio demo for CMFNet. CMFNet achieves competitive performance on three tasks: image deblurring, image dehazing and image deraindrop. Here, we provide a demo for image deraindrop. To use it, simply upload your image, or click one of the examples to load them. Reference from: https://huggingface.co./akhaliq"
article = "<p style='text-align: center'><a href='https://' target='_blank'>Compound Multi-branch Feature Fusion for Real Image Restoration</a> | <a href='https://github.com/FanChiMao/CMFNet' target='_blank'>Github Repo</a></p> <center><img src='https://visitor-badge.glitch.me/badge?page_id=52Hz_CMFNet_deraindrop' alt='visitor badge'></center>"
examples = [['Rain.png'], ['Rain2.png'], ['Rain3.png'], ['Rain4.png'], ['Rain5.png'],]
gr.Interface(
inference,
[gr.inputs.Image(type="pil", label="Input")],
gr.outputs.Image(type="filepath", label="Output"),
title=title,
description=description,
article=article,
allow_flagging=False,
allow_screenshot=False,
examples=examples
).launch(debug=True)