adarsh
commited on
Commit
·
18337e4
1
Parent(s):
fa4665e
added model
Browse files- app.py +114 -0
- models/leaf_disease_res50_model_epoch_10.pth +3 -0
app.py
CHANGED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# detect.py
|
2 |
+
import torch
|
3 |
+
import torchvision.transforms as transforms
|
4 |
+
from torchvision.models import resnet50
|
5 |
+
from PIL import Image
|
6 |
+
import torch.nn as nn
|
7 |
+
|
8 |
+
# Define the class names - make sure these match your training classes
|
9 |
+
CLASS_NAMES = [
|
10 |
+
"Apple___Apple_scab",
|
11 |
+
"Apple___Black_rot",
|
12 |
+
# Add all your class names here...
|
13 |
+
]
|
14 |
+
|
15 |
+
def load_model(model_path):
|
16 |
+
# Initialize the model architecture
|
17 |
+
model = resnet50(pretrained=False)
|
18 |
+
num_classes = len(CLASS_NAMES)
|
19 |
+
model.fc = nn.Linear(model.fc.in_features, num_classes)
|
20 |
+
|
21 |
+
# Load the state dict
|
22 |
+
state_dict = torch.load(model_path, map_location=torch.device('cpu'))
|
23 |
+
model.load_state_dict(state_dict)
|
24 |
+
model.eval()
|
25 |
+
return model
|
26 |
+
|
27 |
+
def predict_image(image_path, model):
|
28 |
+
"""Predict the class of a given image"""
|
29 |
+
# Define the same transform as used during training
|
30 |
+
transform = transforms.Compose([
|
31 |
+
transforms.Resize((224, 224)),
|
32 |
+
transforms.ToTensor(),
|
33 |
+
])
|
34 |
+
|
35 |
+
# Load and preprocess the image
|
36 |
+
image = Image.open(image_path).convert('RGB')
|
37 |
+
image_tensor = transform(image).unsqueeze(0)
|
38 |
+
|
39 |
+
# Make prediction
|
40 |
+
with torch.no_grad():
|
41 |
+
outputs = model(image_tensor)
|
42 |
+
_, predicted = torch.max(outputs, 1)
|
43 |
+
|
44 |
+
return CLASS_NAMES[predicted.item()]
|
45 |
+
|
46 |
+
# streamlit_app.py
|
47 |
+
import streamlit as st
|
48 |
+
import torch
|
49 |
+
import torchvision.transforms as transforms
|
50 |
+
from PIL import Image
|
51 |
+
import os
|
52 |
+
from detect import load_model, predict_image, CLASS_NAMES
|
53 |
+
|
54 |
+
# Set page config
|
55 |
+
st.set_page_config(page_title="Plant Disease Predictor", page_icon="🍃", layout="wide")
|
56 |
+
|
57 |
+
# Load the model
|
58 |
+
@st.cache_resource
|
59 |
+
def load_model_cached():
|
60 |
+
model_path = 'models/leaf_disease_res50_model_epoch_10.pth'
|
61 |
+
model = load_model(model_path)
|
62 |
+
return model
|
63 |
+
|
64 |
+
# Load model at startup
|
65 |
+
model = load_model_cached()
|
66 |
+
|
67 |
+
# Streamlit app
|
68 |
+
st.title("Plant Disease Predictor")
|
69 |
+
st.write("Upload an image of a plant leaf to predict if it has a disease.")
|
70 |
+
|
71 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
72 |
+
|
73 |
+
if uploaded_file is not None:
|
74 |
+
image = Image.open(uploaded_file).convert('RGB')
|
75 |
+
st.image(image, caption='Uploaded Image', use_column_width=True)
|
76 |
+
|
77 |
+
if st.button('Predict'):
|
78 |
+
# Show prediction in progress
|
79 |
+
with st.spinner('Analyzing image...'):
|
80 |
+
# Save the uploaded file temporarily
|
81 |
+
with open("temp_image.jpg", "wb") as f:
|
82 |
+
f.write(uploaded_file.getbuffer())
|
83 |
+
|
84 |
+
# Make prediction
|
85 |
+
prediction = predict_image("temp_image.jpg", model)
|
86 |
+
|
87 |
+
# Remove temporary file
|
88 |
+
os.remove("temp_image.jpg")
|
89 |
+
|
90 |
+
# Display result
|
91 |
+
st.success(f"Prediction: {prediction}")
|
92 |
+
|
93 |
+
# Display confidence scores
|
94 |
+
transform = transforms.Compose([
|
95 |
+
transforms.Resize((224, 224)), # Match the training size
|
96 |
+
transforms.ToTensor(),
|
97 |
+
])
|
98 |
+
|
99 |
+
with torch.no_grad():
|
100 |
+
img_tensor = transform(image).unsqueeze(0)
|
101 |
+
outputs = model(img_tensor)
|
102 |
+
probabilities = torch.nn.functional.softmax(outputs[0], dim=0)
|
103 |
+
|
104 |
+
# Display top 5 predictions
|
105 |
+
top5_prob, top5_catid = torch.topk(probabilities, 5)
|
106 |
+
st.write("Top 5 Predictions:")
|
107 |
+
for i in range(top5_prob.size(0)):
|
108 |
+
st.write(f"{CLASS_NAMES[top5_catid[i]]}: {top5_prob[i].item()*100:.2f}%")
|
109 |
+
|
110 |
+
# Display list of detectable diseases
|
111 |
+
st.write("## List of Detectable Plant Diseases")
|
112 |
+
st.write("This model can detect the following plant diseases:")
|
113 |
+
for disease in CLASS_NAMES:
|
114 |
+
st.write(f"- {disease.replace('___', ' - ')}")
|
models/leaf_disease_res50_model_epoch_10.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6550ff3036e8f9503a549a70ef3b6790a283211fd2e87f97a306194e2f5d6eda
|
3 |
+
size 94663438
|