1inkusFace commited on
Commit
da4a635
·
verified ·
1 Parent(s): 2d2d1c7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -15
app.py CHANGED
@@ -83,20 +83,15 @@ os.putenv("HF_HUB_ENABLE_HF_TRANSFER","1")
83
 
84
  device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
85
 
86
- text_encoder=CLIPTextModel.from_pretrained('ford442/RealVisXL_V5.0_BF16', low_cpu_mem_usage=False, subfolder='text_encoder',token=True)#.to(device=device, dtype=torch.bfloat16)
87
- text_encoder_2=CLIPTextModelWithProjection.from_pretrained('ford442/RealVisXL_V5.0_BF16', low_cpu_mem_usage=False, subfolder='text_encoder_2',token=True)#.to(device=device, dtype=torch.bfloat16)
88
- tokenizer_1=CLIPTokenizer.from_pretrained('ford442/RealVisXL_V5.0_BF16', low_cpu_mem_usage=False, subfolder='tokenizer',token=True)
89
- tokenizer_2=CLIPTokenizer.from_pretrained('ford442/RealVisXL_V5.0_BF16', low_cpu_mem_usage=False, subfolder='tokenizer_2',token=True)
90
- scheduler=EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', low_cpu_mem_usage=False, subfolder='scheduler',token=True)
91
  vaeXL = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae", low_cpu_mem_usage=False, safety_checker=None, use_safetensors=False, torch_dtype=torch.float32, token=True) #.to(device).to(torch.bfloat16) #.to(device=device, dtype=torch.bfloat16)
92
- UNet2DConditionModel
 
93
  def load_and_prepare_model():
94
- #vaeRV = AutoencoderKL.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='vae', safety_checker=None, use_safetensors=True, token=True)
95
- #vaeXL = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae", safety_checker=None, use_safetensors=False, low_cpu_mem_usage=False, torch_dtype=torch.float32, token=True) #.to(device).to(torch.bfloat16) #.to(device=device, dtype=torch.bfloat16)
96
- #sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler',beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1,use_karras_sigmas=True)
97
- #sched = DPMSolverSDEScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler')
98
- #sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler',beta_schedule="scaled_linear", token=True) #, beta_start=0.00085, beta_end=0.012, steps_offset=1,use_karras_sigmas=True, token=True)
99
- #sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler',beta_schedule="scaled_linear")
100
  pipe = StableDiffusionXLPipeline.from_pretrained(
101
  'ford442/RealVisXL_V5.0_BF16',
102
  #torch_dtype=torch.bfloat16,
@@ -185,7 +180,7 @@ def generate_30(
185
  guidance_scale: float = 4,
186
  num_inference_steps: int = 125,
187
  use_resolution_binning: bool = True,
188
- progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
189
  ):
190
  seed = random.randint(0, MAX_SEED)
191
  generator = torch.Generator(device='cuda').manual_seed(seed)
@@ -227,7 +222,7 @@ def generate_60(
227
  guidance_scale: float = 4,
228
  num_inference_steps: int = 125,
229
  use_resolution_binning: bool = True,
230
- progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
231
  ):
232
  seed = random.randint(0, MAX_SEED)
233
  generator = torch.Generator(device='cuda').manual_seed(seed)
@@ -269,7 +264,7 @@ def generate_90(
269
  guidance_scale: float = 4,
270
  num_inference_steps: int = 125,
271
  use_resolution_binning: bool = True,
272
- progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
273
  ):
274
  seed = random.randint(0, MAX_SEED)
275
  generator = torch.Generator(device='cuda').manual_seed(seed)
@@ -341,6 +336,7 @@ with gr.Blocks(theme=gr.themes.Origin(),css=css) as demo:
341
  run_button_30 = gr.Button("Run 30 Seconds", scale=0)
342
  run_button_60 = gr.Button("Run 60 Seconds", scale=0)
343
  run_button_90 = gr.Button("Run 90 Seconds", scale=0)
 
344
  result = gr.Gallery(label="Result", columns=1, show_label=False)
345
 
346
  with gr.Row():
 
83
 
84
  device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
85
 
86
+ text_encoder = CLIPTextModel.from_pretrained('ford442/RealVisXL_V5.0_BF16', low_cpu_mem_usage=False, subfolder='text_encoder', token=True)#.to(device=device, dtype=torch.bfloat16)
87
+ text_encoder_2 = CLIPTextModelWithProjection.from_pretrained('ford442/RealVisXL_V5.0_BF16', low_cpu_mem_usage=False, subfolder='text_encoder_2',token=True)#.to(device=device, dtype=torch.bfloat16)
88
+ tokenizer_1 = CLIPTokenizer.from_pretrained('ford442/RealVisXL_V5.0_BF16', low_cpu_mem_usage=False, subfolder='tokenizer', token=True)
89
+ tokenizer_2 = CLIPTokenizer.from_pretrained('ford442/RealVisXL_V5.0_BF16', low_cpu_mem_usage=False, subfolder='tokenizer_2', token=True)
90
+ scheduler = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', low_cpu_mem_usage=False, subfolder='scheduler', token=True)
91
  vaeXL = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae", low_cpu_mem_usage=False, safety_checker=None, use_safetensors=False, torch_dtype=torch.float32, token=True) #.to(device).to(torch.bfloat16) #.to(device=device, dtype=torch.bfloat16)
92
+ unet = UNet2DConditionModel.from_pretrained("stabilityai/sdxl-vae", low_cpu_mem_usage=False, subfolder='unet', token=True)
93
+
94
  def load_and_prepare_model():
 
 
 
 
 
 
95
  pipe = StableDiffusionXLPipeline.from_pretrained(
96
  'ford442/RealVisXL_V5.0_BF16',
97
  #torch_dtype=torch.bfloat16,
 
180
  guidance_scale: float = 4,
181
  num_inference_steps: int = 125,
182
  use_resolution_binning: bool = True,
183
+ progress=gr.Progress(track_tqdm=True)
184
  ):
185
  seed = random.randint(0, MAX_SEED)
186
  generator = torch.Generator(device='cuda').manual_seed(seed)
 
222
  guidance_scale: float = 4,
223
  num_inference_steps: int = 125,
224
  use_resolution_binning: bool = True,
225
+ progress=gr.Progress(track_tqdm=True)
226
  ):
227
  seed = random.randint(0, MAX_SEED)
228
  generator = torch.Generator(device='cuda').manual_seed(seed)
 
264
  guidance_scale: float = 4,
265
  num_inference_steps: int = 125,
266
  use_resolution_binning: bool = True,
267
+ progress=gr.Progress(track_tqdm=True)
268
  ):
269
  seed = random.randint(0, MAX_SEED)
270
  generator = torch.Generator(device='cuda').manual_seed(seed)
 
336
  run_button_30 = gr.Button("Run 30 Seconds", scale=0)
337
  run_button_60 = gr.Button("Run 60 Seconds", scale=0)
338
  run_button_90 = gr.Button("Run 90 Seconds", scale=0)
339
+
340
  result = gr.Gallery(label="Result", columns=1, show_label=False)
341
 
342
  with gr.Row():