Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -83,16 +83,16 @@ os.putenv("HF_HUB_ENABLE_HF_TRANSFER","1")
|
|
83 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
84 |
|
85 |
def load_and_prepare_model():
|
86 |
-
vaeRV = AutoencoderKL.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='vae', safety_checker=None, use_safetensors=True)
|
87 |
#vaeXL = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae", safety_checker=None, use_safetensors=False) #.to(device).to(torch.bfloat16) #.to(device=device, dtype=torch.bfloat16)
|
88 |
#sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler',beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1,use_karras_sigmas=True)
|
89 |
#sched = DPMSolverSDEScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler')
|
90 |
-
sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler',beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1,use_karras_sigmas=True)
|
91 |
#sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler',beta_schedule="scaled_linear")
|
92 |
pipe = StableDiffusionXLPipeline.from_pretrained(
|
93 |
'ford442/RealVisXL_V5.0_BF16',
|
94 |
#torch_dtype=torch.bfloat16,
|
95 |
-
token=
|
96 |
# low_cpu_mem_usage = False,
|
97 |
add_watermarker=False,
|
98 |
)
|
|
|
83 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
84 |
|
85 |
def load_and_prepare_model():
|
86 |
+
vaeRV = AutoencoderKL.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='vae', safety_checker=None, use_safetensors=True, token=True)
|
87 |
#vaeXL = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae", safety_checker=None, use_safetensors=False) #.to(device).to(torch.bfloat16) #.to(device=device, dtype=torch.bfloat16)
|
88 |
#sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler',beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1,use_karras_sigmas=True)
|
89 |
#sched = DPMSolverSDEScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler')
|
90 |
+
sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler',beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1,use_karras_sigmas=True, token=True)
|
91 |
#sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler',beta_schedule="scaled_linear")
|
92 |
pipe = StableDiffusionXLPipeline.from_pretrained(
|
93 |
'ford442/RealVisXL_V5.0_BF16',
|
94 |
#torch_dtype=torch.bfloat16,
|
95 |
+
token=True,
|
96 |
# low_cpu_mem_usage = False,
|
97 |
add_watermarker=False,
|
98 |
)
|