Spaces:
Sleeping
Sleeping
import cv2 | |
import dlib | |
import gradio as gr | |
from PIL import Image | |
from transformers import pipeline | |
# Load pre-trained image classification model from transformers library | |
model = pipeline("image-classification", model="0x70DA/down-syndrome-classifier-v2") | |
# Load face detector from dlib library | |
detector = dlib.get_frontal_face_detector() | |
def predict(img): | |
faces = detector(img) | |
if len(faces) > 0: | |
face = faces[0] # Assuming there's only one face in the image | |
x, y, w, h = face.left(), face.top(), face.width(), face.height() | |
cropped_face = img[y : y + h, x : x + w] | |
# Convert the cropped image to a PIL image | |
pil_image = Image.fromarray(cv2.cvtColor(cropped_face, cv2.COLOR_BGR2RGB)) | |
pred = model(pil_image) | |
return {o["label"]: o["score"] for o in pred} | |
return RuntimeError("No faces detected.") | |
demo = gr.Interface( | |
fn=predict, inputs=gr.components.Image(), outputs=gr.components.Label() | |
) | |
demo.launch() | |