from transformers import PreTrainedModel | |
from .unet3D import UNet | |
from .UNetFTSRConfig import UNetFTSRConfig | |
class UNetFTSR(PreTrainedModel): | |
config_class = UNetFTSRConfig | |
def __init__(self, config): | |
super().__init__(config) | |
self.model = UNet( | |
in_channels=config.in_channels, | |
n_classes=config.n_classes, | |
depth=config.depth, | |
wf=config.wf, | |
padding=config.padding, | |
batch_norm=config.batch_norm, | |
up_mode=config.up_mode, | |
dropout=config.dropout) | |
def forward(self, x): | |
return self.model(x) |