File size: 1,999 Bytes
b2d68d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import numpy as np
from transformers import AutoProcessor, AutoTokenizer, AutoImageProcessor, AutoModelForCausalLM, BlipForConditionalGeneration, VisionEncoderDecoderModel
from typing import Dict, List, Any
from PIL import Image
from transformers import pipeline
import requests
import torch
from io import BytesIO
import base64

class EndpointHandler():
    def __init__(self, path=""):
        self.device = "cuda:0" if torch.cuda.is_available() else "cpu"
        print("device:",self.device)
        self.model_name = "sooh-j/blip-image-captioning-base"
        self.processor = AutoProcessor.from_pretrained(self.model_name)
        self.model = BlipForConditionalGeneration.from_pretrained(self.model_name,
                                                             )

    def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
        """
        data args:
            inputs (:obj: `str` | `PIL.Image` | `np.array`)
            kwargs
        Return:
            A :obj:`list` | `dict`: will be serialized and returned
        """
        inputs = data.get("inputs")
        imageBase64 = inputs.get("image")
        # question = inputs.get("question")

        # imageURL = inputs.get("image")
        # image = Image.open(requests.get(imageBase64, stream=True).raw)

        if 'http:' in imageBase64: 
            image = Image.open(requests.get(imageBase64, stream=True).raw)
        else:
            image = Image.open(BytesIO(base64.b64decode(imageBase64.split(",")[0].encode())))

        # prompt = f"Question: {question}, Answer:"
        processed = self.processor(images=image, return_tensors="pt").to(self.device)

        with torch.no_grad():
            out = self.model.generate(**processed, max_new_tokens=50).to(self.device)
        
        result = {}
        text_output = self.processor.decode(out[0], skip_special_tokens=True)
        result["text_output"] = text_output
        score = 0
        
        return [{"answer":text_output,"score":score}]