File size: 7,801 Bytes
16130a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a6a63a
aca78e2
16130a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aca78e2
16130a4
 
 
6a6a63a
aca78e2
16130a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aca78e2
16130a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
---
license: cc-by-nc-sa-4.0
datasets:
- somosnlp/es-inclusive-language
language:
- es
---
# es-inclusivo-translator

This model is a fine-tuned version of [projecte-aina/aguila-7b](https://huggingface.co./projecte-aina/aguila-7b) on the dataset [somosnlp/es-inclusive-language](https://huggingface.co./datasets/somosnlp/es-inclusive-language).

Languages are powerful tools to communicate ideas, but their use is not impartial. The selection of words carries inherent biases and reflects subjective perspectives. In some cases, language is wielded to enforce ideologies, marginalize certain groups, or promote specific political agendas.
Spanish is not the exception to that. For instance, when we say “los alumnos” or “los ingenieros”, we are excluding women from those groups. Similarly, expressions such as “los gitanos” o “los musulmanes” perpetuate discrimination against these communities.

In response to these linguistic challenges, this model offers a way to construct inclusive alternatives in accordance with official guidelines on inclusive language from various Spanish speaking countries. Its purpose is to provide grammatically correct and inclusive solutions to situations where our language choices might otherwise be exclusive. 
This is a tool that contributes to the fifth of the Sustainable Development Goals: Achieve gender equality and empower all women and girls.

The model works in such a way that, given an input text, it returns the original text rewritten using inclusive language.

It achieves the following results on the evaluation set:
- Loss: 0.6030

## Model description
- **Developed by**: Andrés Martínez Fernández-Salguero ([andresmfs](https://huggingface.co./Andresmfs)), Imanuel Rozenberg (manu_20392), Gaia Quintana Fleitas (gaiaq), Josué Sauca (josue_sauca), Miguel López (wizmik12)
- **Language(s)**: Spanish
- **Fine-tuned from the model**: [projecte-aina/aguila-7b](https://huggingface.co./projecte-aina/aguila-7b)
- **License**: cc-by-nc-sa-4.0

## Social Impact
An inclusive translator holds significant social impact by promoting equity and representation within texts. By rectifying biases ingrained in language and fostering inclusivity, it combats discrimination, amplifies the visibility of marginalized groups, and contributes  to the cultivation of a more inclusive and respectful society.
This is a tool that contributes to the fifth of the Sustainable Development Goals: Achieve gender equality and empower all women and girls.

## Intended uses & limitations

More information needed

### How to use
Here is how to use this model:

```python
from transformers import AutoTokenizer
from transformers import AutoModelForCausalLM
import torch

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained('somosnlp/', trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained('somosnlp/', trust_remote_code=True,
    quantization_config=bnb_config,
    device_map="auto")

# generation_config
generation_config = model.generation_config
generation_config.max_new_tokens = 100
generation_config.temperature = 0.7
generation_config.top_p = 0.7
generation_config.num_return_sequences = 1
generation_config.pad_token_id = tokenizer.eos_token_id
generation_config.eos_token_id = tokenizer.eos_token_id

# Define inference function
def translate_es_inclusivo(exclusive_text): 
    
    # generate input prompt
    eval_prompt = f"""Reescribe el siguiente texto utilizando lenguaje inclusivo.\n
      Texto: {exclusive_text}\n
      Texto en lenguaje inclusivo:"""
    
    # tokenize input
    model_input = tokenizer(eval_prompt, return_tensors="pt").to(model.device)
    
    # set max_new_tokens if necessary
    if len(model_input['input_ids'][0]) > 80:
        model.generation_config.max_new_tokens = len(model_input['input_ids'][0]) + 0.2 * len(model_input['input_ids'][0])
    
    # get length of encoded prompt
    prompt_token_len = len(model_input['input_ids'][0])
        
    # generate and decode
    with torch.no_grad():
        inclusive_text = tokenizer.decode(model.generate(**model_input, generation_config=generation_config)[0][prompt_token_len:], 
                                          skip_special_tokens=True)                                                                        
    
    return inclusive_text

##########

input_text = 'Los alumnos atienden a sus profesores'

print(translate_es_inclusivo(input_text))
```


As it is a heavy model, you may want to use it in 4-bits:

``` python
from transformers import AutoTokenizer
from transformers import AutoModelForCausalLM
from transformers import BitsAndBytesConfig
import torch


## Load model in 4bits
# bnb_configuration
bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_quant_type='nf4',
    bnb_4bit_compute_dtype=torch.bfloat16,
    bnb_4bit_use_double_quant=False)


# model
model = AutoModelForCausalLM.from_pretrained('somosnlp/', trust_remote_code=True,
    quantization_config=bnb_config,
    device_map="auto")

# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained('somosnlp/', trust_remote_code=True)

# generation_config
generation_config = model.generation_config
generation_config.max_new_tokens = 100
generation_config.temperature = 0.7
generation_config.top_p = 0.7
generation_config.num_return_sequences = 1
generation_config.pad_token_id = tokenizer.eos_token_id
generation_config.eos_token_id = tokenizer.eos_token_id

# Define inference function
def translate_es_inclusivo(exclusive_text): 
    
    # generate input prompt
    eval_prompt = f"""Reescribe el siguiente texto utilizando lenguaje inclusivo.\n
      Texto: {exclusive_text}\n
      Texto en lenguaje inclusivo:"""
    
    # tokenize input
    model_input = tokenizer(eval_prompt, return_tensors="pt").to(model.device)
    
    # set max_new_tokens if necessary
    if len(model_input['input_ids'][0]) > 80:
        model.generation_config.max_new_tokens = len(model_input['input_ids'][0]) + 0.2 * len(model_input['input_ids'][0])
    
    # get length of encoded prompt
    prompt_token_len = len(model_input['input_ids'][0])
        
    # generate and decode
    with torch.no_grad():
        inclusive_text = tokenizer.decode(model.generate(**model_input, generation_config=generation_config)[0][prompt_token_len:], 
                                          skip_special_tokens=True)                                                                        
    
    return inclusive_text

##########

input_text = 'Los alumnos atienden a sus profesores'

print(translate_es_inclusivo(input_text))
```

## Training and evaluation data

Training and evaluation data can be found in [somosnlp/es-inclusive-language](https://huggingface.co./datasets/somosnlp/es-inclusive-language)

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log        | 1.0   | 402  | 0.8020          |
| 1.0274        | 2.0   | 804  | 0.7019          |
| 0.6745        | 3.0   | 1206 | 0.6515          |
| 0.5826        | 4.0   | 1608 | 0.6236          |
| 0.5104        | 5.0   | 2010 | 0.6161          |
| 0.5104        | 6.0   | 2412 | 0.6149          |
| 0.4579        | 7.0   | 2814 | 0.6030          |
| 0.4255        | 8.0   | 3216 | 0.6151          |
| 0.3898        | 9.0   | 3618 | 0.6209          |
| 0.3771        | 10.0  | 4020 | 0.6292          |


### Framework versions

- Transformers 4.30.0
- Pytorch 2.2.2+cu121
- Datasets 2.18.0
- Tokenizers 0.13.3