File size: 4,829 Bytes
29309ab 81b0e90 3f1f1fa e610672 4a5746f 29309ab 565c1ab 29309ab 3f1f1fa 29309ab e610672 3f1f1fa 29309ab 3f1f1fa 29309ab 3f1f1fa 29309ab 565c1ab e610672 565c1ab 0ae0a31 565c1ab f7f9bd0 565c1ab f7f9bd0 565c1ab 6c072e7 565c1ab ea5a583 5b28481 ea5a583 565c1ab 1906f29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 |
---
language:
- es
metrics:
- f1
pipeline_tag: text-classification
datasets:
- hackathon-somos-nlp-2023/suicide-comments-es
license: apache-2.0
---
# Model Description
This model is a fine-tuned version of [PlanTL-GOB-ES/roberta-base-bne](https://huggingface.co./PlanTL-GOB-ES/roberta-base-bne) to detect suicidal ideation/behavior in public comments (reddit, forums, twitter, etc.) using the Spanish language.
# How to use
```python
>>> from transformers import pipeline
>>> model_name= 'hackathon-somos-nlp-2023/roberta-base-bne-finetuned-suicide-es'
>>> pipe = pipeline("text-classification", model=model_name)
>>> pipe("Quiero acabar con todo. No merece la pena vivir.")
[{'label': 'Suicide', 'score': 0.9999703168869019}]
>>> pipe("El partido de fútbol fue igualado, disfrutamos mucho jugando juntos.")
[{'label': 'Non-Suicide', 'score': 0.999990701675415}]
```
# Training
## Training data
The dataset consists of comments on Reddit, Twitter, and inputs/outputs of the Alpaca dataset translated to Spanish language and classified as suicidal ideation/behavior and non-suicidal.
The dataset has 10050 rows (777 considered as Suicidal Ideation/Behavior and 9273 considered Non-Suicidal).
More info: https://huggingface.co./datasets/hackathon-somos-nlp-2023/suicide-comments-es
## Training procedure
The training data has been tokenized using the `PlanTL-GOB-ES/roberta-base-bne` tokenizer with a vocabulary size of 50262 tokens and a model maximum length of 512 tokens.
The training lasted a total of 10 minutes using a NVIDIA GPU GeForce RTX 3090 provided by Q Blocks.
```
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 460.32.03 Driver Version: 460.32.03 CUDA Version: 11.2 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 0 GeForce RTX 3090 Off | 00000000:68:00.0 Off | N/A |
| 31% 50C P8 25W / 250W | 1MiB / 24265MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=============================================================================|
| No running processes found |
+-----------------------------------------------------------------------------+
```
# Considerations for Using the Model
The model is designed for use in Spanish language, specifically to detect suicidal ideation/behavior.
## Limitations
It is a research toy project. Don't expect a professional, bug-free model. We have found some false positives and false negatives. If you find a bug, please send us your feedback.
## Bias
No measures have been taken to estimate the bias and toxicity embedded in the model or dataset. However, the model was fine-tuned using a dataset mainly collected on Reddit, Twitter, and ChatGPT. So there is probably an age bias because [the Internet is used more by younger people](https://www.statista.com/statistics/272365/age-distribution-of-internet-users-worldwide).
In addition, this model inherits biases from its original base model. You can review these biases by visiting the following [link](https://huggingface.co./PlanTL-GOB-ES/roberta-base-bne#limitations-and-bias).
# Evaluation
## Metric
F1 = 2 * (precision * recall) / (precision + recall)
## 5 K fold
We use [KFold](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html) with `n_splits=5` to evaluate the model.
Results:
```
>>> best_f1_model_by_fold = [0.9163879598662207, 0.9380530973451328, 0.9333333333333333, 0.8943661971830986, 0.9226190476190477]
>>> best_f1_model_by_fold.mean()
0.9209519270693666
```
# Additional Information
## Team
* [dariolopez](https://huggingface.co./dariolopez)
* [diegogd](https://huggingface.co./diegogd)
## Licesing
This work is licensed under a [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0)
## Demo (Space)
https://huggingface.co./spaces/hackathon-somos-nlp-2023/suicide-comments-es |