--- license: mit datasets: - IlyaGusev/ru_turbo_alpaca - IlyaGusev/ru_turbo_alpaca_evol_instruct - IlyaGusev/ru_turbo_saiga - IlyaGusev/ru_sharegpt_cleaned - IlyaGusev/oasst1_ru_main_branch - IlyaGusev/gpt_roleplay_realm - lksy/ru_instruct_gpt4 language: - ru - en library_name: peft tags: - Saiga - ruGPT-3.5 - 13B - chat - lora - Peft - adapter --- # ruGPT-3.5 13B LoRA: Adapter-Only Version Welcome to the adapter-only version of ruGPT-3.5 13B LoRA. This model is built upon the foundation of [ruGPT-3.5-13B](https://huggingface.co./ai-forever/ruGPT-3.5-13B). 📌 Important: This model was trained using settings identical to [GigaSaiga](https://huggingface.co./IlyaGusev/gigasaiga_lora), but incorporates additional dataset. 🔗 Training code is [here](https://github.com/EvilFreelancer/ruGPT-3.5-13B-lora). > Note: If you prefer, you can opt to use the ruGPT-3.5 13B fp16 base model. ## Code sample ```python from peft import AutoPeftModelForCausalLM model = AutoPeftModelForCausalLM.from_pretrained("zpbrent/peft-ruGPT-3.5-13B-lora") ``` ## Examples ```text User: Привет! Почему трава зелёная? ruGPT-3.5: Трава зелёная благодаря хлорофиллу - пигменту растений, который поглощает световые волны определенной длины и преобразует их в энергию химических связей. Хлорофилл также обеспечивает растения питательными веществами из почвы через фотосинтез. ``` ```text User: Придумай стишок про нейросети. ruGPT-3.5: Нейросеть – это чудо науки, Она способна решать любые задачи. И если ты хочешь стать программистом, То лучше всего изучать нейронные сети. ``` ```text User: Высота самой высокой горы на Земле? ruGPT-3.5: Самая высокая гора на Земле находится в Гималаях и называется Эверест (8848 метров). ``` ```text User: Сколько максимум лет может прожить галопогосская черепаха? ruGPT-3.5: Галопогосские черепахи могут жить до 100 лет и более. Они являются одними из самых долгоживущих животных на планете. ``` ## 📚 Training Datasets The datasets utilized for training this model are consistent with those used for [Saiga-2](https://github.com/IlyaGusev/rulm). Here's the comprehensive list: - [ru_turbo_alpaca](https://huggingface.co./datasets/IlyaGusev/ru_turbo_alpaca) - [ru_turbo_alpaca_evol_instruct](https://huggingface.co./datasets/IlyaGusev/ru_turbo_alpaca_evol_instruct) - [ru_turbo_saiga](https://huggingface.co./datasets/IlyaGusev/ru_turbo_saiga) - [ru_sharegpt_cleaned](https://huggingface.co./datasets/IlyaGusev/ru_sharegpt_cleaned) - [oasst1_ru_main_branch](https://huggingface.co./datasets/IlyaGusev/oasst1_ru_main_branch) - [gpt_roleplay_realm](https://huggingface.co./datasets/IlyaGusev/gpt_roleplay_realm) - [ru_instruct_gpt4](https://huggingface.co./datasets/lksy/ru_instruct_gpt4) ## 🛠 Training Procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ## ⚙️ Framework Versions Ensure you have the following framework versions for compatibility: - PyTorch 2.1.0 - PEFT 0.5.0 - bitsandbytes 0.41.1 - transformers 4.34.0 ## Links - https://t.me/evilfreelancer - https://dzen.ru/evilfreelancer