sohomghosh
commited on
Commit
•
ee4af77
1
Parent(s):
54ef9da
Update README.md
Browse files
README.md
CHANGED
@@ -43,13 +43,13 @@ class Triage(Dataset):
|
|
43 |
This is a subclass of torch packages Dataset class. It processes input to create ids, masks and targets required for model training.
|
44 |
"""
|
45 |
|
46 |
-
def __init__(self, dataframe, tokenizer, max_len, text_col_name
|
47 |
self.len = len(dataframe)
|
48 |
self.data = dataframe
|
49 |
self.tokenizer = tokenizer
|
50 |
self.max_len = max_len
|
51 |
self.text_col_name = text_col_name
|
52 |
-
|
53 |
|
54 |
def __getitem__(self, index):
|
55 |
title = str(self.data[self.text_col_name][index])
|
@@ -69,9 +69,7 @@ class Triage(Dataset):
|
|
69 |
return {
|
70 |
"ids": torch.tensor(ids, dtype=torch.long),
|
71 |
"mask": torch.tensor(mask, dtype=torch.long),
|
72 |
-
|
73 |
-
self.data[self.category_col][index], dtype=torch.long
|
74 |
-
),
|
75 |
}
|
76 |
|
77 |
def __len__(self):
|
@@ -97,7 +95,7 @@ class BERTClass(torch.nn.Module):
|
|
97 |
output = self.classifier(pooler)
|
98 |
return output
|
99 |
|
100 |
-
def do_predict(tokenizer):
|
101 |
test_set = Triage(test_df, tokenizer, MAX_LEN, text_col_name)
|
102 |
test_params = {'batch_size' : BATCH_SIZE, 'shuffle': False, 'num_workers':0}
|
103 |
test_loader = DataLoader(test_set, **test_params)
|
@@ -121,7 +119,7 @@ model_read.to(device)
|
|
121 |
model_read.load_stat_dict(torch.load('pytorch_model.bin', map_location=device)['model_state_dict'])
|
122 |
|
123 |
tokenizer_read = BertTokenizer.from_pretrained('ProsusAI/finbert')
|
124 |
-
actual_predictions_read = do_predict(tokenizer_read)
|
125 |
|
126 |
test_df['readability'] = ['readable' if i==1 else 'not_reabale' for i in actual_predictions_read]
|
127 |
|
|
|
43 |
This is a subclass of torch packages Dataset class. It processes input to create ids, masks and targets required for model training.
|
44 |
"""
|
45 |
|
46 |
+
def __init__(self, dataframe, tokenizer, max_len, text_col_name):
|
47 |
self.len = len(dataframe)
|
48 |
self.data = dataframe
|
49 |
self.tokenizer = tokenizer
|
50 |
self.max_len = max_len
|
51 |
self.text_col_name = text_col_name
|
52 |
+
|
53 |
|
54 |
def __getitem__(self, index):
|
55 |
title = str(self.data[self.text_col_name][index])
|
|
|
69 |
return {
|
70 |
"ids": torch.tensor(ids, dtype=torch.long),
|
71 |
"mask": torch.tensor(mask, dtype=torch.long),
|
72 |
+
|
|
|
|
|
73 |
}
|
74 |
|
75 |
def __len__(self):
|
|
|
95 |
output = self.classifier(pooler)
|
96 |
return output
|
97 |
|
98 |
+
def do_predict(model, tokenizer):
|
99 |
test_set = Triage(test_df, tokenizer, MAX_LEN, text_col_name)
|
100 |
test_params = {'batch_size' : BATCH_SIZE, 'shuffle': False, 'num_workers':0}
|
101 |
test_loader = DataLoader(test_set, **test_params)
|
|
|
119 |
model_read.load_stat_dict(torch.load('pytorch_model.bin', map_location=device)['model_state_dict'])
|
120 |
|
121 |
tokenizer_read = BertTokenizer.from_pretrained('ProsusAI/finbert')
|
122 |
+
actual_predictions_read = do_predict(model_read, tokenizer_read)
|
123 |
|
124 |
test_df['readability'] = ['readable' if i==1 else 'not_reabale' for i in actual_predictions_read]
|
125 |
|