--- library_name: peft license: llama3.2 base_model: unsloth/Llama-3.2-1B tags: - axolotl - generated_from_trainer model-index: - name: ce1d5ab0-9d0d-4b21-beb7-0309aff1f277 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Llama-3.2-1B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 1c5d8209adc13c02_train_data.json ds_type: json format: custom path: /workspace/input_data/1c5d8209adc13c02_train_data.json type: field_instruction: instruction field_output: response format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 5 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 16 gradient_checkpointing: false group_by_length: false hub_model_id: sn56m4/ce1d5ab0-9d0d-4b21-beb7-0309aff1f277 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 8 mlflow_experiment_name: /tmp/1c5d8209adc13c02_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: sn56-miner wandb_mode: disabled wandb_name: ce1d5ab0-9d0d-4b21-beb7-0309aff1f277 wandb_project: god wandb_run: bcea wandb_runid: ce1d5ab0-9d0d-4b21-beb7-0309aff1f277 warmup_steps: 2 weight_decay: 0.0 xformers_attention: null ```

# ce1d5ab0-9d0d-4b21-beb7-0309aff1f277 This model is a fine-tuned version of [unsloth/Llama-3.2-1B](https://huggingface.co./unsloth/Llama-3.2-1B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9571 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 16 - total_train_batch_size: 512 - total_eval_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 2 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0181 | 1 | 2.1752 | | 1.9692 | 0.1808 | 10 | 1.5592 | | 1.3666 | 0.3616 | 20 | 1.1985 | | 1.1175 | 0.5424 | 30 | 1.0333 | | 1.0006 | 0.7232 | 40 | 0.9682 | | 0.9658 | 0.9040 | 50 | 0.9571 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1