--- library_name: peft license: other base_model: NousResearch/Meta-Llama-3-8B-Alternate-Tokenizer tags: - axolotl - generated_from_trainer model-index: - name: 08c69ef5-9a88-403a-96bb-a9f8d332705d results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Meta-Llama-3-8B-Alternate-Tokenizer bf16: auto chat_template: llama3 cosine_min_lr_ratio: 0.1 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - b441c5f43212c3f1_train_data.json ds_type: json format: custom path: /workspace/input_data/b441c5f43212c3f1_train_data.json type: field_instruction: prompt field_output: chosen format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: '{'''':torch.cuda.current_device()}' do_eval: true early_stopping_patience: 30 eval_batch_size: 1 eval_sample_packing: false eval_steps: 25 evaluation_strategy: steps flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 64 gradient_checkpointing: true group_by_length: true hub_model_id: sn56a1/08c69ef5-9a88-403a-96bb-a9f8d332705d hub_repo: stevemonite hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lora_target_modules: - q_proj - v_proj lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 70GiB max_steps: 166 micro_batch_size: 1 mlflow_experiment_name: /tmp/b441c5f43212c3f1_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 save_strategy: steps sequence_len: 2048 strict: false tf32: false tokenizer_type: AutoTokenizer torch_compile: false train_on_inputs: false trust_remote_code: true val_set_size: 50 wandb_entity: sn56-miner wandb_mode: disabled wandb_name: null wandb_project: god wandb_run: pig7 wandb_runid: null warmup_raio: 0.03 warmup_ratio: 0.04 weight_decay: 0.01 xformers_attention: null ```

# 08c69ef5-9a88-403a-96bb-a9f8d332705d This model is a fine-tuned version of [NousResearch/Meta-Llama-3-8B-Alternate-Tokenizer](https://huggingface.co./NousResearch/Meta-Llama-3-8B-Alternate-Tokenizer) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2019 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 64 - total_train_batch_size: 256 - total_eval_batch_size: 4 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 4 - training_steps: 107 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.2719 | 0.0283 | 1 | 0.3376 | | 0.2571 | 0.7067 | 25 | 0.2262 | | 0.2299 | 1.4134 | 50 | 0.2103 | | 0.2016 | 2.1201 | 75 | 0.2041 | | 0.1882 | 2.8269 | 100 | 0.2019 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1