File size: 7,017 Bytes
76690c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
from flask import Flask, render_template, request, send_file, jsonify
import requests
import json
import ssl
import logging
import sys
import os
import base64
import io
#replace the path with your hifigan path to import Generator from models.py 
sys.path.append("hifigan")
# import argparse
import torch
from espnet2.bin.tts_inference import Text2Speech
from models import Generator
from scipy.io.wavfile import write
from meldataset import MAX_WAV_VALUE
from env import AttrDict
import json
import yaml
from text_preprocess_for_inference import TTSDurAlignPreprocessor
# import time

logging.basicConfig(filename='access.log', level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')

SAMPLING_RATE = 22050
if torch.cuda.is_available():
    device = "cuda"
else:
    device = "cpu"

preprocessor = TTSDurAlignPreprocessor()

app = Flask(__name__)
# app.config['SECRET_KEY'] = 'key'
# socketio = SocketIO(app)

# @socketio.on('new_user')
# def handle_new_user(data):
#     client_id = data['id']
#     # print('\n'+f"New user connected with ID: {client_id}")
#     logging.info('\n'+f"New user connected with ID: {client_id}")

def load_hifigan_vocoder(language, gender, device):
    # Load HiFi-GAN vocoder configuration file and generator model for the specified language and gender
    vocoder_config = f"vocoder/{gender}/aryan/hifigan/config.json"
    vocoder_generator = f"vocoder/{gender}/aryan/hifigan/generator"
    # Read the contents of the vocoder configuration file
    with open(vocoder_config, 'r') as f:
        data = f.read()
    json_config = json.loads(data)
    h = AttrDict(json_config)
    torch.manual_seed(h.seed)
    # Move the generator model to the specified device (CPU or GPU)
    device = torch.device(device)
    generator = Generator(h).to(device)
    state_dict_g = torch.load(vocoder_generator, device)
    generator.load_state_dict(state_dict_g['generator'])
    generator.eval()
    generator.remove_weight_norm()

    # Return the loaded and prepared HiFi-GAN generator model
    return generator

def load_fastspeech2_model(language, gender, device):
    
    #updating the config.yaml fiel based on language and gender
    with open(f"{language}/{gender}/model/config.yaml", "r") as file:      
     config = yaml.safe_load(file)
    
    current_working_directory = os.getcwd()
    feat="model/feats_stats.npz"
    pitch="model/pitch_stats.npz"
    energy="model/energy_stats.npz"
    
    feat_path=os.path.join(current_working_directory,language,gender,feat)
    pitch_path=os.path.join(current_working_directory,language,gender,pitch)
    energy_path=os.path.join(current_working_directory,language,gender,energy)

    
    config["normalize_conf"]["stats_file"]  = feat_path
    config["pitch_normalize_conf"]["stats_file"]  = pitch_path
    config["energy_normalize_conf"]["stats_file"]  = energy_path
        
    with open(f"{language}/{gender}/model/config.yaml", "w") as file:
        yaml.dump(config, file)
    
    tts_model = f"{language}/{gender}/model/model.pth"
    tts_config = f"{language}/{gender}/model/config.yaml"
    
    
    return Text2Speech(train_config=tts_config, model_file=tts_model, device=device)

def text_synthesis(language, gender, sample_text, vocoder, MAX_WAV_VALUE, device, alpha=1):
    # Perform Text-to-Speech synthesis
    with torch.no_grad():
        # Load the FastSpeech2 model for the specified language and gender
        
        model = load_fastspeech2_model(language, gender, device)
       
        # Generate mel-spectrograms from the input text using the FastSpeech2 model
        out = model(sample_text, decode_conf={"alpha": alpha})
        print("TTS Done")  
        x = out["feat_gen_denorm"].T.unsqueeze(0) * 2.3262
        x = x.to(device)
        
        # Use the HiFi-GAN vocoder to convert mel-spectrograms to raw audio waveforms
        y_g_hat = vocoder(x)
        audio = y_g_hat.squeeze()
        audio = audio * MAX_WAV_VALUE
        audio = audio.cpu().numpy().astype('int16')
        
        # Return the synthesized audio
        return audio

def setup_app():
    genders = ['male','female']
    # to make dummy calls in all languages available
    languages = {'hindi': "नमस्ते",'malayalam': "ഹലോ",'manipuri': "হ্যালো",'marathi': "हॅलो",'kannada': "ಹಲೋ",'bodo': "हॅलो",'english': "Hello",'assamese': "হ্যালো",'tamil': "ஹலோ",'odia': "ହେଲୋ",'rajasthani': "हॅलो",'telugu': "హలో",'bengali': "হ্যালো",'gujarati': "હલો"}
    
    vocoders = {}
    for gender in genders:
        vocoders[gender]={}
        for language,text in languages.items():
            # Load the HiFi-GAN vocoder with dynamic language and gender
            vocoder = load_hifigan_vocoder(language, gender, device)
            vocoders[gender][language] = vocoder
            # dummy calls
            print(f"making dummy calls for {language} - {gender}")
            try:
                out = text_synthesis(language, gender, text, vocoder, MAX_WAV_VALUE, device)
            except:
                message = f"cannot make dummy call for {gender} - {language} <==================="
                print(message.upper())
                
    print("Server Started...")
    return vocoders
vocoders = setup_app()

@app.route('/', methods=['GET'])
def main():
    return "IITM_TTS_V2"

@app.route('/tts', methods=['GET', 'POST'], strict_slashes=False)
def tts():
    try:
        json_data = request.get_json()
        text = json_data["input"]
        if not isinstance(text,str):
            input_type = type(text)
            ret = jsonify(status='failure', reason=f"Unsupported input type {input_type}. Input text should be in string format.")
        gender = json_data["gender"]
        language = json_data["lang"].lower()
        alpha = json_data["alpha"]
        # Preprocess the sample text
        preprocessed_text, phrases = preprocessor.preprocess(text, language, gender)
        preprocessed_text = " ".join(preprocessed_text)
        vocoder = vocoders[gender][language]
        out = text_synthesis(language, gender, preprocessed_text, vocoder, MAX_WAV_VALUE, device, alpha=alpha)
        
        # output_file = f"{language}_{gender}_output.wav"
        # write(output_file, SAMPLING_RATE, out)
        # audio_wav_bytes = base64.b64encode(open(output_file, "rb").read())

        # avoid saving file on disk
        output_stream = io.BytesIO()
        write(output_stream, SAMPLING_RATE, out)
        audio_wav_bytes = base64.b64encode(output_stream.getvalue())

        ret = jsonify(status="success",audio=audio_wav_bytes.decode('utf-8'))

    except Exception as err:
        ret = jsonify(status="failure", reason=str(err))
    return ret

if __name__ == '__main__':
    # ssl_context = ssl.create_default_context(ssl.Purpose.CLIENT_AUTH)
    # ssl_context.load_cert_chain('./ssl2023/iitm2022.crt','./ssl2023/iitm2022.key')
    app.run(host='0.0.0.0', port=4005, debug=True)