File size: 7,017 Bytes
76690c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
from flask import Flask, render_template, request, send_file, jsonify
import requests
import json
import ssl
import logging
import sys
import os
import base64
import io
#replace the path with your hifigan path to import Generator from models.py
sys.path.append("hifigan")
# import argparse
import torch
from espnet2.bin.tts_inference import Text2Speech
from models import Generator
from scipy.io.wavfile import write
from meldataset import MAX_WAV_VALUE
from env import AttrDict
import json
import yaml
from text_preprocess_for_inference import TTSDurAlignPreprocessor
# import time
logging.basicConfig(filename='access.log', level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
SAMPLING_RATE = 22050
if torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
preprocessor = TTSDurAlignPreprocessor()
app = Flask(__name__)
# app.config['SECRET_KEY'] = 'key'
# socketio = SocketIO(app)
# @socketio.on('new_user')
# def handle_new_user(data):
# client_id = data['id']
# # print('\n'+f"New user connected with ID: {client_id}")
# logging.info('\n'+f"New user connected with ID: {client_id}")
def load_hifigan_vocoder(language, gender, device):
# Load HiFi-GAN vocoder configuration file and generator model for the specified language and gender
vocoder_config = f"vocoder/{gender}/aryan/hifigan/config.json"
vocoder_generator = f"vocoder/{gender}/aryan/hifigan/generator"
# Read the contents of the vocoder configuration file
with open(vocoder_config, 'r') as f:
data = f.read()
json_config = json.loads(data)
h = AttrDict(json_config)
torch.manual_seed(h.seed)
# Move the generator model to the specified device (CPU or GPU)
device = torch.device(device)
generator = Generator(h).to(device)
state_dict_g = torch.load(vocoder_generator, device)
generator.load_state_dict(state_dict_g['generator'])
generator.eval()
generator.remove_weight_norm()
# Return the loaded and prepared HiFi-GAN generator model
return generator
def load_fastspeech2_model(language, gender, device):
#updating the config.yaml fiel based on language and gender
with open(f"{language}/{gender}/model/config.yaml", "r") as file:
config = yaml.safe_load(file)
current_working_directory = os.getcwd()
feat="model/feats_stats.npz"
pitch="model/pitch_stats.npz"
energy="model/energy_stats.npz"
feat_path=os.path.join(current_working_directory,language,gender,feat)
pitch_path=os.path.join(current_working_directory,language,gender,pitch)
energy_path=os.path.join(current_working_directory,language,gender,energy)
config["normalize_conf"]["stats_file"] = feat_path
config["pitch_normalize_conf"]["stats_file"] = pitch_path
config["energy_normalize_conf"]["stats_file"] = energy_path
with open(f"{language}/{gender}/model/config.yaml", "w") as file:
yaml.dump(config, file)
tts_model = f"{language}/{gender}/model/model.pth"
tts_config = f"{language}/{gender}/model/config.yaml"
return Text2Speech(train_config=tts_config, model_file=tts_model, device=device)
def text_synthesis(language, gender, sample_text, vocoder, MAX_WAV_VALUE, device, alpha=1):
# Perform Text-to-Speech synthesis
with torch.no_grad():
# Load the FastSpeech2 model for the specified language and gender
model = load_fastspeech2_model(language, gender, device)
# Generate mel-spectrograms from the input text using the FastSpeech2 model
out = model(sample_text, decode_conf={"alpha": alpha})
print("TTS Done")
x = out["feat_gen_denorm"].T.unsqueeze(0) * 2.3262
x = x.to(device)
# Use the HiFi-GAN vocoder to convert mel-spectrograms to raw audio waveforms
y_g_hat = vocoder(x)
audio = y_g_hat.squeeze()
audio = audio * MAX_WAV_VALUE
audio = audio.cpu().numpy().astype('int16')
# Return the synthesized audio
return audio
def setup_app():
genders = ['male','female']
# to make dummy calls in all languages available
languages = {'hindi': "नमस्ते",'malayalam': "ഹലോ",'manipuri': "হ্যালো",'marathi': "हॅलो",'kannada': "ಹಲೋ",'bodo': "हॅलो",'english': "Hello",'assamese': "হ্যালো",'tamil': "ஹலோ",'odia': "ହେଲୋ",'rajasthani': "हॅलो",'telugu': "హలో",'bengali': "হ্যালো",'gujarati': "હલો"}
vocoders = {}
for gender in genders:
vocoders[gender]={}
for language,text in languages.items():
# Load the HiFi-GAN vocoder with dynamic language and gender
vocoder = load_hifigan_vocoder(language, gender, device)
vocoders[gender][language] = vocoder
# dummy calls
print(f"making dummy calls for {language} - {gender}")
try:
out = text_synthesis(language, gender, text, vocoder, MAX_WAV_VALUE, device)
except:
message = f"cannot make dummy call for {gender} - {language} <==================="
print(message.upper())
print("Server Started...")
return vocoders
vocoders = setup_app()
@app.route('/', methods=['GET'])
def main():
return "IITM_TTS_V2"
@app.route('/tts', methods=['GET', 'POST'], strict_slashes=False)
def tts():
try:
json_data = request.get_json()
text = json_data["input"]
if not isinstance(text,str):
input_type = type(text)
ret = jsonify(status='failure', reason=f"Unsupported input type {input_type}. Input text should be in string format.")
gender = json_data["gender"]
language = json_data["lang"].lower()
alpha = json_data["alpha"]
# Preprocess the sample text
preprocessed_text, phrases = preprocessor.preprocess(text, language, gender)
preprocessed_text = " ".join(preprocessed_text)
vocoder = vocoders[gender][language]
out = text_synthesis(language, gender, preprocessed_text, vocoder, MAX_WAV_VALUE, device, alpha=alpha)
# output_file = f"{language}_{gender}_output.wav"
# write(output_file, SAMPLING_RATE, out)
# audio_wav_bytes = base64.b64encode(open(output_file, "rb").read())
# avoid saving file on disk
output_stream = io.BytesIO()
write(output_stream, SAMPLING_RATE, out)
audio_wav_bytes = base64.b64encode(output_stream.getvalue())
ret = jsonify(status="success",audio=audio_wav_bytes.decode('utf-8'))
except Exception as err:
ret = jsonify(status="failure", reason=str(err))
return ret
if __name__ == '__main__':
# ssl_context = ssl.create_default_context(ssl.Purpose.CLIENT_AUTH)
# ssl_context.load_cert_chain('./ssl2023/iitm2022.crt','./ssl2023/iitm2022.key')
app.run(host='0.0.0.0', port=4005, debug=True) |