File size: 1,796 Bytes
5d98d05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90b3179
 
 
 
 
 
5d98d05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90b3179
5d98d05
 
 
 
 
 
 
 
 
 
 
 
90b3179
 
 
5d98d05
 
 
 
90b3179
5d98d05
90b3179
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
license: apache-2.0
base_model: facebook/bart-base
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: bart_samsum_model
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bart_samsum_model

This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co./facebook/bart-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5246
- Rouge1: 0.472
- Rouge2: 0.2373
- Rougel: 0.3986
- Rougelsum: 0.3987
- Gen Len: 18.1954

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2.8410039143956672e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| 1.822         | 1.0   | 1842 | 1.5989          | 0.4581 | 0.2227 | 0.3846 | 0.385     | 18.1893 |
| 1.5641        | 2.0   | 3684 | 1.5492          | 0.4661 | 0.2328 | 0.3936 | 0.3936    | 18.2576 |
| 1.4168        | 3.0   | 5526 | 1.5246          | 0.472  | 0.2373 | 0.3986 | 0.3987    | 18.1954 |


### Framework versions

- Transformers 4.37.2
- Pytorch 2.1.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.1