program(1.0) [buildInfo = dict, tensor>({{"coremlc-component-MIL", "3304.5.2"}, {"coremlc-version", "3304.6.2"}, {"coremltools-component-torch", "2.1.0"}, {"coremltools-source-dialect", "TorchScript"}, {"coremltools-version", "8.0b1"}})] { func main(tensor x) { tensor var_6 = const()[name = tensor("op_6"), val = tensor(true)]; tensor var_9 = const()[name = tensor("op_9"), val = tensor(1)]; tensor x_eps_interleave_0 = const()[name = tensor("x_eps_interleave_0"), val = tensor(false)]; tensor eps_chan_to_fp16 = const()[name = tensor("eps_chan_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(64)))]; tensor x_eps_cast_fp16 = concat(axis = var_9, interleave = x_eps_interleave_0, values = (x, eps_chan_to_fp16))[name = tensor("x_eps_cast_fp16")]; tensor norm_x_axes_0 = const()[name = tensor("norm_x_axes_0"), val = tensor([1])]; tensor norm_x_cast_fp16 = reduce_l2_norm(axes = norm_x_axes_0, keep_dims = var_6, x = x_eps_cast_fp16)[name = tensor("norm_x_cast_fp16")]; tensor x_normed_1_cast_fp16 = real_div(x = x, y = norm_x_cast_fp16)[name = tensor("x_normed_1_cast_fp16")]; tensor var_34_to_fp16 = const()[name = tensor("op_34_to_fp16"), val = tensor(0x1p+6)]; tensor x_normed_3_cast_fp16 = mul(x = x_normed_1_cast_fp16, y = var_34_to_fp16)[name = tensor("x_normed_3_cast_fp16")]; tensor ln_f_weight_to_fp16 = const()[name = tensor("ln_f_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(256)))]; tensor x_5_cast_fp16 = mul(x = x_normed_3_cast_fp16, y = ln_f_weight_to_fp16)[name = tensor("x_5_cast_fp16")]; tensor var_48 = const()[name = tensor("op_48"), val = tensor([1, 4096, 1, -1])]; tensor x_cast_fp16 = reshape(shape = var_48, x = x_5_cast_fp16)[name = tensor("x_cast_fp16")]; tensor var_51_axes_0 = const()[name = tensor("op_51_axes_0"), val = tensor([2])]; tensor var_51_cast_fp16 = squeeze(axes = var_51_axes_0, x = x_cast_fp16)[name = tensor("op_51_cast_fp16")]; tensor var_54_perm_0 = const()[name = tensor("op_54_perm_0"), val = tensor([0, 2, 1])]; tensor concat_4 = const()[name = tensor("concat_4"), val = tensor([64, 4096])]; tensor var_54_cast_fp16 = transpose(perm = var_54_perm_0, x = var_51_cast_fp16)[name = tensor("transpose_4")]; tensor reshape_0_cast_fp16 = reshape(shape = concat_4, x = var_54_cast_fp16)[name = tensor("reshape_0_cast_fp16")]; tensor matmul_0_transpose_x_0 = const()[name = tensor("matmul_0_transpose_x_0"), val = tensor(false)]; tensor matmul_0_transpose_y_0 = const()[name = tensor("matmul_0_transpose_y_0"), val = tensor(false)]; tensor transpose_1_to_fp16 = const()[name = tensor("transpose_1_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(8512)))]; tensor matmul_0_cast_fp16 = matmul(transpose_x = matmul_0_transpose_x_0, transpose_y = matmul_0_transpose_y_0, x = reshape_0_cast_fp16, y = transpose_1_to_fp16)[name = tensor("matmul_0_cast_fp16")]; tensor concat_8 = const()[name = tensor("concat_8"), val = tensor([1, 64, 16384])]; tensor reshape_2_cast_fp16 = reshape(shape = concat_8, x = matmul_0_cast_fp16)[name = tensor("reshape_2_cast_fp16")]; tensor matmul_1_transpose_x_0 = const()[name = tensor("matmul_1_transpose_x_0"), val = tensor(false)]; tensor matmul_1_transpose_y_0 = const()[name = tensor("matmul_1_transpose_y_0"), val = tensor(false)]; tensor transpose_3_to_fp16 = const()[name = tensor("transpose_3_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(134226304)))]; tensor matmul_1_cast_fp16 = matmul(transpose_x = matmul_1_transpose_x_0, transpose_y = matmul_1_transpose_y_0, x = reshape_0_cast_fp16, y = transpose_3_to_fp16)[name = tensor("matmul_1_cast_fp16")]; tensor concat_16 = const()[name = tensor("concat_16"), val = tensor([1, 64, 15616])]; tensor reshape_5_cast_fp16 = reshape(shape = concat_16, x = matmul_1_cast_fp16)[name = tensor("reshape_5_cast_fp16")]; tensor var_69 = const()[name = tensor("op_69"), val = tensor(-1)]; tensor var_70_interleave_0 = const()[name = tensor("op_70_interleave_0"), val = tensor(false)]; tensor logits = concat(axis = var_69, interleave = var_70_interleave_0, values = (reshape_2_cast_fp16, reshape_5_cast_fp16))[name = tensor("op_70_cast_fp16")]; } -> (logits); }