--- library_name: segmentation-models-pytorch license: other pipeline_tag: image-segmentation tags: - model_hub_mixin - pytorch_model_hub_mixin - segmentation-models-pytorch - semantic-segmentation - pytorch - segformer languages: - python --- # Segformer Model Card Table of Contents: - [Load trained model](#load-trained-model) - [Model init parameters](#model-init-parameters) - [Model metrics](#model-metrics) - [Dataset](#dataset) ## Load trained model [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/qubvel/segmentation_models.pytorch/blob/main/examples/segformer_inference_pretrained.ipynb) 1. Install requirements. ```bash pip install -U segmentation_models_pytorch albumentations ``` 2. Run inference. ```python import torch import requests import numpy as np import albumentations as A import segmentation_models_pytorch as smp from PIL import Image device = "cuda" if torch.cuda.is_available() else "cpu" # Load pretrained model and preprocessing function checkpoint = "smp-hub/segformer-b1-1024x1024-city-160k" model = smp.from_pretrained(checkpoint).eval().to(device) preprocessing = A.Compose.from_pretrained(checkpoint) # Load image url = "https://huggingface.co./datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg" image = Image.open(requests.get(url, stream=True).raw) # Preprocess image np_image = np.array(image) normalized_image = preprocessing(image=np_image)["image"] input_tensor = torch.as_tensor(normalized_image) input_tensor = input_tensor.permute(2, 0, 1).unsqueeze(0) # HWC -> BCHW input_tensor = input_tensor.to(device) # Perform inference with torch.no_grad(): output_mask = model(input_tensor) # Postprocess mask mask = torch.nn.functional.interpolate( output_mask, size=(image.height, image.width), mode="bilinear", align_corners=False ) mask = mask.argmax(1).cpu().numpy() # argmax over predicted classes (channels dim) ``` ## Model init parameters ```python model_init_params = { "encoder_name": "mit_b1", "encoder_depth": 5, "encoder_weights": None, "decoder_segmentation_channels": 256, "in_channels": 3, "classes": 19, "activation": None, "aux_params": None } ``` ## Dataset Dataset name: [Cityscapes](https://paperswithcode.com/dataset/cityscapes) ## More Information - Library: https://github.com/qubvel/segmentation_models.pytorch - Docs: https://smp.readthedocs.io/en/latest/ - License: https://github.com/NVlabs/SegFormer/blob/master/LICENSE This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co./docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin)