--- license: apache-2.0 base_model: TinyLlama/TinyLlama_v1.1 tags: - trl - reward-trainer - generated_from_trainer metrics: - accuracy model-index: - name: tinyllama_rm_sentiment_1b results: [] datasets: - trl-internal-testing/sentiment-trl-style --- # tinyllama_rm_sentiment_1b This model is a fine-tuned version of [TinyLlama/TinyLlama_v1.1](https://huggingface.co./TinyLlama/TinyLlama_v1.1) on https://huggingface.co./datasets/trl-internal-testing/sentiment-trl-style. It achieves the following results on the evaluation set: - Loss: 0.6514 - Accuracy: 0.625 ## Model description Trained using: ``` python trl/examples/scripts/rm/rm.py \ --dataset_name trl-internal-testing/sentiment-trl-style \ --dataset_train_split train \ --dataset_eval_split test \ --model_name_or_path TinyLlama/TinyLlama_v1.1 \ --chat_template simple_concat \ --learning_rate 3e-6 \ --per_device_train_batch_size 32 \ --per_device_eval_batch_size 32 \ --gradient_accumulation_steps 1 \ --logging_steps 1 \ --eval_strategy steps \ --max_token_length 1024 \ --max_prompt_token_lenth 1024 \ --remove_unused_columns False \ --num_train_epochs 1 \ --eval_steps 100 \ --output_dir models/ppo_torchtune/tinyllama/tinyllama_rm_sentiment_1b \ --push_to_hub ``` on the "dataset-processor" branch of trl: git clone -b "dataset-processor" https://github.com/huggingface/trl ## Intended uses & limitations More information needed ## Training and evaluation data https://huggingface.co./datasets/trl-internal-testing/sentiment-trl-style ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-06 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.6033 | 0.6410 | 100 | 0.6514 | 0.625 | ### Framework versions - Transformers 4.42.2 - Pytorch 2.2.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1