--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_keras_callback model-index: - name: Entrnal_5class_agumm_last_newV6_model results: [] --- # Entrnal_5class_agumm_last_newV6_model This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co./google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0410 - Train Accuracy: 0.9612 - Train Top-3-accuracy: 0.9962 - Validation Loss: 0.3703 - Validation Accuracy: 0.9623 - Validation Top-3-accuracy: 0.9963 - Epoch: 12 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 1209, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Top-3-accuracy | Validation Loss | Validation Accuracy | Validation Top-3-accuracy | Epoch | |:----------:|:--------------:|:--------------------:|:---------------:|:-------------------:|:-------------------------:|:-----:| | 1.0109 | 0.5898 | 0.8913 | 0.5771 | 0.7468 | 0.9576 | 0 | | 0.4103 | 0.7997 | 0.9708 | 0.4029 | 0.8329 | 0.9786 | 1 | | 0.2249 | 0.8581 | 0.9827 | 0.3677 | 0.8769 | 0.9857 | 2 | | 0.1584 | 0.8905 | 0.9877 | 0.3730 | 0.9010 | 0.9893 | 3 | | 0.1164 | 0.9097 | 0.9904 | 0.3957 | 0.9169 | 0.9913 | 4 | | 0.0841 | 0.9231 | 0.9920 | 0.3896 | 0.9285 | 0.9927 | 5 | | 0.0676 | 0.9331 | 0.9932 | 0.3718 | 0.9373 | 0.9937 | 6 | | 0.0561 | 0.9408 | 0.9941 | 0.3701 | 0.9440 | 0.9944 | 7 | | 0.0500 | 0.9468 | 0.9947 | 0.3691 | 0.9493 | 0.9949 | 8 | | 0.0461 | 0.9516 | 0.9952 | 0.3698 | 0.9535 | 0.9954 | 9 | | 0.0435 | 0.9554 | 0.9956 | 0.3694 | 0.9570 | 0.9958 | 10 | | 0.0418 | 0.9585 | 0.9959 | 0.3705 | 0.9598 | 0.9961 | 11 | | 0.0410 | 0.9612 | 0.9962 | 0.3703 | 0.9623 | 0.9963 | 12 | ### Framework versions - Transformers 4.44.2 - TensorFlow 2.15.1 - Datasets 3.0.0 - Tokenizers 0.19.1