File size: 18,420 Bytes
8188de0 a0687c6 8188de0 a0687c6 8188de0 a0687c6 8188de0 a0687c6 8188de0 a0687c6 8188de0 a0687c6 8188de0 a0687c6 8188de0 a0687c6 8188de0 a0687c6 8188de0 a0687c6 8188de0 a0687c6 8188de0 a0687c6 8188de0 a0687c6 8188de0 a0687c6 8188de0 a0687c6 8188de0 a0687c6 8188de0 a0687c6 8188de0 d03fe92 8188de0 66d1fff 8188de0 66d1fff 8188de0 66d1fff 8188de0 594b7e2 8188de0 37aba0c 8188de0 6ce8719 71199b4 8188de0 594b7e2 8188de0 594b7e2 8188de0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 |
---
pipeline_tag: text-generation
inference: true
widget:
- text: 'def print_hello_world():'
example_title: Hello world
group: Python
license: bigscience-openrail-m
pretrain-datasets:
- books
- arxiv
- c4
- falcon-refinedweb
- wiki
- github-issues
- stack_markdown
- self-made dataset of permissive github code
datasets:
- bigcode/the-stack-dedup
- rombodawg/2XUNCENSORED_MegaCodeTraining188k
- bigcode/commitpackft
metrics:
- code_eval
library_name: transformers
tags:
- code
model-index:
- name: Refact-1.6B
results:
- task:
type: text-generation
dataset:
type: openai_humaneval
name: HumanEval
metrics:
- name: pass@1 (T=0.01)
type: pass@1
value: 32.0
verified: false
- name: pass@1 (T=0.2)
type: pass@1
value: 31.5
verified: false
- name: pass@10 (T=0.8)
type: pass@10
value: 53.0
verified: false
- name: pass@100 (T=0.8)
type: pass@100
value: 76.9
verified: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalSynthesize Python
metrics:
- name: pass@1 (T=0.2)
type: pass@1
value: 35.8
verified: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalSynthesize JavaScript
metrics:
- name: pass@1 (T=0.2)
type: pass@1
value: 31.6
verified: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalSynthesize Java
metrics:
- name: pass@1 (T=0.2)
type: pass@1
value: 29.1
verified: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalSynthesize Go
metrics:
- name: pass@1 (T=0.2)
type: pass@1
value: -1
verified: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalSynthesize C++
metrics:
- name: pass@1 (T=0.2)
type: pass@1
value: 26.3
verified: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalSynthesize Rust
metrics:
- name: pass@1 (T=0.2)
type: pass@1
value: -1
verified: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalSynthesize Average
metrics:
- name: pass@1 (T=0.2)
type: pass@1
value: -1
verified: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalFixTests Python
metrics:
- name: pass@1 (T=0.2)
type: pass@1
value: 18.38
verified: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalFixTests JavaScript
metrics:
- name: pass@1 (T=0.2)
type: pass@1
value: 12.28
verified: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalFixTests Java
metrics:
- name: pass@1 (T=0.2)
type: pass@1
value: 15.12
verified: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalFixTests Go
metrics:
- name: pass@1 (T=0.2)
type: pass@1
value: -1
verified: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalFixTests C++
metrics:
- name: pass@1 (T=0.2)
type: pass@1
value: 13.17
verified: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalFixTests Rust
metrics:
- name: pass@1 (T=0.2)
type: pass@1
value: 2.8
verified: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalFixTests Average
metrics:
- name: pass@1 (T=0.2)
type: pass@1
value: -1
verified: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalFixDocs Python
metrics:
- name: pass@1 (T=0.2)
type: pass@1
value: 26.92
verified: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalFixDocs JavaScript
metrics:
- name: pass@1 (T=0.2)
type: pass@1
value: 26.85
verified: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalFixDocs Java
metrics:
- name: pass@1 (T=0.2)
type: pass@1
value: 30.76
verified: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalFixDocs Go
metrics:
- name: pass@1 (T=0.2)
type: pass@1
value: -1
verified: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalFixDocs C++
metrics:
- name: pass@1 (T=0.2)
type: pass@1
value: 25.94
verified: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalFixDocs Rust
metrics:
- name: pass@1 (T=0.2)
type: pass@1
value: 8.44
verified: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalFixDocs Average
metrics:
- name: pass@1 (T=0.2)
type: pass@1
value: -1
verified: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalExplain Python
metrics:
- name: pass@1 (T=0.2)
type: pass@1
value: 26.46
verified: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalExplain JavaScript
metrics:
- name: pass@1 (T=0.2)
type: pass@1
value: 17.86
verified: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalExplain Java
metrics:
- name: pass@1 (T=0.2)
type: pass@1
value: 20.94
verified: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalExplain Go
metrics:
- name: pass@1 (T=0.2)
type: pass@1
value: -1
verified: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalExplain C++
metrics:
- name: pass@1 (T=0.2)
type: pass@1
value: 18.78
verified: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalExplain Rust
metrics:
- name: pass@1 (T=0.2)
type: pass@1
value: -1
verified: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalExplain Average
metrics:
- name: pass@1 (T=0.2)
type: pass@1
value: -1
verified: false
- task:
type: text-generation
dataset:
type: mbpp
name: MBPP
metrics:
- name: pass@1 (T=0.01)
type: pass@1
value: 31.15
verified: false
- task:
type: text-generation
dataset:
type: ds1000
name: DS-1000 (Overall Completion)
metrics:
- name: pass@1 (T=0.2)
type: pass@1
value: 10.1
verified: false
- task:
type: text-generation
dataset:
type: nuprl/MultiPL-E
name: MultiPL-HumanEval (C++)
metrics:
- name: pass@1 (T=0.2)
type: pass@1
value: 21.61
verified: false
- task:
type: text-generation
dataset:
type: nuprl/MultiPL-E
name: MultiPL-HumanEval (C#)
metrics:
- name: pass@1 (T=0.2)
type: pass@1
value: 13.91
verified: false
- task:
type: text-generation
dataset:
type: nuprl/MultiPL-E
name: MultiPL-HumanEval (D)
metrics:
- name: pass@1 (T=0.2)
type: pass@1
value: 9.5
verified: false
- task:
type: text-generation
dataset:
type: nuprl/MultiPL-E
name: MultiPL-HumanEval (Go)
metrics:
- name: pass@1 (T=0.2)
type: pass@1
value: 53.57
verified: false
- task:
type: text-generation
dataset:
type: nuprl/MultiPL-E
name: MultiPL-HumanEval (Java)
metrics:
- name: pass@1 (T=0.2)
type: pass@1
value: 21.58
verified: false
- task:
type: text-generation
dataset:
type: nuprl/MultiPL-E
name: MultiPL-HumanEval (Julia)
metrics:
- name: pass@1 (T=0.2)
type: pass@1
value: 13.75
verified: false
- task:
type: text-generation
dataset:
type: nuprl/MultiPL-E
name: MultiPL-HumanEval (JavaScript)
metrics:
- name: pass@1 (T=0.2)
type: pass@1
value: 26.88
verified: false
- task:
type: text-generation
dataset:
type: nuprl/MultiPL-E
name: MultiPL-HumanEval (Lua)
metrics:
- name: pass@1 (T=0.2)
type: pass@1
value: 15.26
verified: false
- task:
type: text-generation
dataset:
type: nuprl/MultiPL-E
name: MultiPL-HumanEval (PHP)
metrics:
- name: pass@1 (T=0.2)
type: pass@1
value: 23.04
verified: false
- task:
type: text-generation
dataset:
type: nuprl/MultiPL-E
name: MultiPL-HumanEval (Perl)
metrics:
- name: pass@1 (T=0.2)
type: pass@1
value: 12.1
verified: false
- task:
type: text-generation
dataset:
type: nuprl/MultiPL-E
name: MultiPL-HumanEval (Python)
metrics:
- name: pass@1 (T=0.2)
type: pass@1
value: 29.6
verified: false
- task:
type: text-generation
dataset:
type: nuprl/MultiPL-E
name: MultiPL-HumanEval (R)
metrics:
- name: pass@1 (T=0.2)
type: pass@1
value: 13.77
verified: false
- task:
type: text-generation
dataset:
type: nuprl/MultiPL-E
name: MultiPL-HumanEval (Ruby)
metrics:
- name: pass@1 (T=0.2)
type: pass@1
value: 12.68
verified: false
- task:
type: text-generation
dataset:
type: nuprl/MultiPL-E
name: MultiPL-HumanEval (Racket)
metrics:
- name: pass@1 (T=0.2)
type: pass@1
value: 4.29
verified: false
- task:
type: text-generation
dataset:
type: nuprl/MultiPL-E
name: MultiPL-HumanEval (Rust)
metrics:
- name: pass@1 (T=0.2)
type: pass@1
value: 19.54
verified: false
- task:
type: text-generation
dataset:
type: nuprl/MultiPL-E
name: MultiPL-HumanEval (Scala)
metrics:
- name: pass@1 (T=0.2)
type: pass@1
value: 18.33
verified: false
- task:
type: text-generation
dataset:
type: nuprl/MultiPL-E
name: MultiPL-HumanEval (Bash)
metrics:
- name: pass@1 (T=0.2)
type: pass@1
value: 5.7
verified: false
- task:
type: text-generation
dataset:
type: nuprl/MultiPL-E
name: MultiPL-HumanEval (Swift)
metrics:
- name: pass@1 (T=0.2)
type: pass@1
value: 17.68
verified: false
- task:
type: text-generation
dataset:
type: nuprl/MultiPL-E
name: MultiPL-HumanEval (TypeScript)
metrics:
- name: pass@1 (T=0.2)
type: pass@1
value: 25
verified: false
language:
- en
---
![image/png](https://cdn-uploads.huggingface.co/production/uploads/643a9dd0c5f633a7fa7e804a/HkB0QYV0BbmB3ktMugbZy.png)
# Refact-1.6B
Finally, the model we started training with our [blog post](https://refact.ai/blog/2023/applying-recent-innovations-to-train-model/) is ready 🎉
After fine-tuning on generated data, it beats Replit 3b, Stability Code 3b and many other models. It almost beats
StarCoder ten times the size!
Model | Size | HumanEval pass@1 | HumanEval pass@10 |
----------------------|---------------|--------------------|--------------------|
DeciCoder-1b | 1b | 19.1% | |
<b>Refact-1.6-fim</b> | <b>1.6b</b> | <b>32.0%</b> | <b>53.0%</b> |
StableCode | 3b | 20.2% | 33.8% |
ReplitCode v1 | 3b | 21.9% | |
CodeGen2.5-multi | 7b | 28.4% | 47.5% |
CodeLlama | 7b | 33.5% | 59.6% |
StarCoder | 15b | 33.6% | |
Likely, it's the best model for practical use in your IDE for code completion because it's smart and fast!
You can start using it right now by downloading the
[Refact plugin](https://refact.ai/). You can host the model yourself, too, using the
[open source docker container](https://github.com/smallcloudai/refact).
And it's multi-language (see MultiPL-HumanEval and other metrics below) and it works as a chat (see the section below).
# It Works As a Chat
The primary application of this model is code completion (infill) in multiple programming languages.
But it works as a chat quite well.
HumanEval results using instruction following (chat) format, against models specialized for chat only:
Model | Size | pass@1 | pass@10 |
-----------------------|--------|----------|----------|
<b>Refact-1.6-fim</b> | 1.6b | 38.4% | 55.6% |
StableCode-instruct | 3b | 26.9% | 36.2% |
OctoGeeX | 6b | 44.7% | |
CodeLlama-instruct | 7b | 34.8% | 64.3% |
CodeGen2.5-instruct | 7b | 36.2% | 60.87 |
CodeLlama-instruct | 13b | 42.7% | 71.6% |
StarChat-β | 15b | 33.5% | |
OctoCoder | 15b | 46.2% | |
# Example
Fill-in-the-middle uses special tokens to identify the prefix/middle/suffix part of the input and output:
```python
# pip install -q transformers
from transformers import AutoModelForCausalLM, AutoTokenizer
checkpoint = "smallcloudai/Refact-1_6B-fim"
device = "cuda" # for GPU usage or "cpu" for CPU usage
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForCausalLM.from_pretrained(checkpoint, trust_remote_code=True).to(device)
prompt = '<fim_prefix>def print_hello_world():\n """<fim_suffix>\n print("Hello world!")<fim_middle>'
inputs = tokenizer.encode(prompt, return_tensors="pt").to(device)
outputs = model.generate(inputs, max_length=100, temperature=0.2)
print("-"*80)
print(tokenizer.decode(outputs[0]))
```
# Chat Format
The same model works as chat (experimental).
```python
prompt_template = "<empty_output>SYSTEM {system}\n" \
"<empty_output>USER {query}\n" \
"<empty_output>ASSISTANT"
prompt = prompt_template.format(system="You are a programming assistant",
query="How do I sort a list in Python?")
```
# Architecture
As described in more detail in the blog post, we used:
- [ALiBi](https://arxiv.org/abs/2108.12409) based attention
- [LayerNorm](https://arxiv.org/abs/1607.06450v1) instead of [RMSNorm](https://arxiv.org/pdf/1910.07467.pdf)
- [Multi Query Attention](https://arxiv.org/abs/1911.02150)
We also used LiON, flash attention, early dropout. It's not that innovative that you can't run it, in fact you can -- see an example below.
# Pretraining
For the base model, we used our own dataset that contains code with permissive licenses only, and open text datasets.
Filtering is the key to success of this model:
- We only used text in English
- Only topics related to computer science
- Applied heavy deduplication
The text to code proportion was 50:50, model trained for 1.2T tokens.
We don't release the base model, because its Fill-in-the-Middle (FIM) capability likes to repeat itself too much, so
its practical use is limited. But if you still want it, write us a message on Discord.
# Finetuning
We tested our hypothesis that chat data should boost base model performance in FIM and
regular left-to-right code completion. We found that just 15% of open
[code](https://huggingface.co./datasets/bigcode/commitpackft)
[instruction-following](https://huggingface.co./datasets/rombodawg/2XUNCENSORED_MegaCodeTraining188k) datasets,
that we filtered for quality, improves almost all metrics.
Additionally, to improve FIM, we observed common failure modes, and prepared a synthetic dataset based on
[The Stack dedup v1.1](https://huggingface.co./datasets/bigcode/the-stack-dedup) to address them.
There is a distribution shift between typical code on the internet, and the code you write in your IDE.
The former is likely finished, so the model tries to come up with a suggestion that makes the code complete.
You are likely to have half-written code as you work on it, there is no single addition that can repair it
fully.
In practice, model needs to have a tendency to stop after a couple of lines are added, and sometimes don't write
anything at all. We found that just giving it empty completions, single line completions, multiline
completions that end with a smaller text indent or at least a newline -- makes it much more usable. This data
was used as the rest 85% of the finetune dataset.
The final model is the result of several attempts to make it work as good as possible for code completion,
and to perform well on a wide range of metrics. The best attempt took 40B tokens.
# Limitations and Bias
The Refact-1.6B model was trained on text in English. But it has seen a lot more languages in
code comments. Its performance on non-English languages is lower, for sure.
# Model Stats
- **Architecture:** LLAMA-like model with multi-query attention
- **Objectives** Fill-in-the-Middle, Chat
- **Tokens context:** 4096
- **Pretraining tokens:** 1.2T
- **Finetuning tokens:** 40B
- **Precision:** bfloat16
- **GPUs** 64 NVidia A5000
- **Training time** 28 days
# License
The model is licensed under the BigScience OpenRAIL-M v1 license agreement
# Citation
If you are using this model, please give a link to this page. |