--- library_name: transformers license: llama3.1 base_model: meta-llama/Llama-3.1-8B tags: - axolotl - generated_from_trainer model-index: - name: Llama3.1-8B-relu-stage-2-dolma-v1_7-50B-4096 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.5.2` ```yaml base_model: meta-llama/Llama-3.1-8B model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer tokenizer_use_fast: false resize_token_embeddings_to_32x: false flash_attention: true xformers_attention: load_in_8bit: false load_in_4bit: false strict: false datasets: - path: skymizer/Llama3.1-base-tokenized-dolma-v1_7-50B train_on_split: train type: completion test_datasets: - path: skymizer/Llama3.1-tokenized-dolma-v1_7-test split: test type: completion is_preprocess: true skip_prepare_dataset: true dataset_prepared_path: /mnt/home/model-team/datasets/pretokenized/Llama3.1-8B-base-tokenized-dolma-v1_7_50B-4096 hf_use_auth_token: true output_dir: /mnt/home/model-team/models/Llama3.1-8B-relu-stage-2-dolma-50B-4096 resume_from_checkpoint: auto_resume_from_checkpoints: true sequence_len: 4096 sample_packing: true sample_packing_group_size: 100000 sample_packing_bin_size: 200 pad_to_sequence_len: true eval_sample_packing: false # eval_causal_lm_metrics: ["perplexity"] wandb_project: "sparse-tuning-cpt" wandb_entity: wandb_watch: wandb_name: "Llama3.1-8B-relu-stage-1-dolma-50B-4096" wandb_log_model: # global batch size = 2 * 8 * 8 GPUs * 8 Nodes * 4096 = 4M gradient_accumulation_steps: 8 micro_batch_size: 2 # eval_batch_size: 2 num_epochs: 1 optimizer: adamw_torch learning_rate: 0.000015 lr_scheduler: cosine cosine_min_lr_ratio: 1.0 weight_decay: 0.0 adam_beta1: 0.9 adam_beta2: 0.95 adam_eps: 0.000001 max_grad_norm: 1.0 train_on_inputs: false group_by_length: false bf16: true fp16: tf32: false hub_model_id: "skymizer/Llama3.1-8B-relu-stage-2-dolma-v1_7-50B-4096" save_strategy: "steps" save_steps: 500 gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 warmup_steps: 1 eval_steps: 500 eval_table_size: debug: deepspeed: /root/train/axolotl/deepspeed_configs/zero3_bf16.json fsdp: fsdp_config: seed: 42 special_tokens: pad_token: "<|end_of_text|>" ```

# Llama3.1-8B-relu-stage-2-dolma-v1_7-50B-4096 This model is a fine-tuned version of [meta-llama/Llama-3.1-8B](https://huggingface.co./meta-llama/Llama-3.1-8B) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.4342 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 64 - gradient_accumulation_steps: 8 - total_train_batch_size: 1024 - total_eval_batch_size: 128 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.95) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 2 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:-----:|:---------------:| | 14.2348 | 0.0001 | 1 | 14.2931 | | 2.9296 | 0.0414 | 500 | 3.0717 | | 2.6209 | 0.0829 | 1000 | 2.7409 | | 2.4945 | 0.1243 | 1500 | 2.6571 | | 2.5314 | 0.1657 | 2000 | 2.6148 | | 2.4494 | 0.2072 | 2500 | 2.5855 | | 2.4257 | 0.2486 | 3000 | 2.5569 | | 2.4346 | 0.2901 | 3500 | 2.5402 | | 2.4243 | 0.3315 | 4000 | 2.5284 | | 2.3699 | 0.3729 | 4500 | 2.5134 | | 2.4072 | 0.4144 | 5000 | 2.5064 | | 2.4064 | 0.4558 | 5500 | 2.4953 | | 2.3683 | 0.4972 | 6000 | 2.4950 | | 2.3811 | 0.5387 | 6500 | 2.4804 | | 2.3494 | 0.5801 | 7000 | 2.4734 | | 2.3444 | 0.6215 | 7500 | 2.4663 | | 2.3578 | 0.6630 | 8000 | 2.4626 | | 2.344 | 0.7044 | 8500 | 2.4557 | | 2.3284 | 0.7458 | 9000 | 2.4529 | | 2.3086 | 0.7873 | 9500 | 2.4488 | | 2.321 | 0.8287 | 10000 | 2.4443 | | 2.3339 | 0.8702 | 10500 | 2.4409 | | 2.3236 | 0.9116 | 11000 | 2.4391 | | 2.3404 | 0.9530 | 11500 | 2.4387 | | 2.3103 | 0.9945 | 12000 | 2.4342 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3