|
import copy |
|
import warnings |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import torch |
|
from torch import nn |
|
from torch.nn import CrossEntropyLoss, MSELoss, BCEWithLogitsLoss |
|
|
|
from transformers import AutoModelForSequenceClassification |
|
from transformers.modeling_outputs import Seq2SeqSequenceClassifierOutput |
|
from transformers.models.t5.configuration_t5 import T5Config |
|
from transformers.models.t5.modeling_t5 import T5PreTrainedModel, T5Model |
|
|
|
|
|
class T5ClassificationHead(nn.Module): |
|
"""Head for sentence-level classification tasks.""" |
|
|
|
def __init__(self, config: T5Config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.d_model, config.d_model) |
|
self.dropout = nn.Dropout(p=config.classifier_dropout) |
|
self.out_proj = nn.Linear(config.d_model, config.num_labels) |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
hidden_states = self.dropout(hidden_states) |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = torch.tanh(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
hidden_states = self.out_proj(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class T5ForSequenceClassification(T5PreTrainedModel): |
|
_keys_to_ignore_on_load_unexpected = ["decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight"] |
|
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"] |
|
|
|
def __init__(self, config: T5Config): |
|
super().__init__(config) |
|
self.transformer = T5Model(config) |
|
self.classification_head = T5ClassificationHead(config) |
|
|
|
|
|
self.post_init() |
|
|
|
self.model_parallel = False |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
decoder_input_ids: Optional[torch.LongTensor] = None, |
|
decoder_attention_mask: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
decoder_head_mask: Optional[torch.Tensor] = None, |
|
cross_attn_head_mask: Optional[torch.Tensor] = None, |
|
encoder_outputs: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
decoder_inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, Seq2SeqSequenceClassifierOutput]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., |
|
config.num_labels - 1]`. If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
Returns: |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
if labels is not None: |
|
use_cache = False |
|
|
|
if input_ids is None and inputs_embeds is not None: |
|
raise NotImplementedError( |
|
f"Passing input embeddings is currently not supported for {self.__class__.__name__}" |
|
) |
|
|
|
|
|
|
|
if decoder_input_ids is None and decoder_inputs_embeds is None: |
|
if input_ids is None: |
|
raise ValueError( |
|
"If no `decoder_input_ids` or `decoder_inputs_embeds` are " |
|
"passed, `input_ids` cannot be `None`. Please pass either " |
|
"`input_ids` or `decoder_input_ids` or `decoder_inputs_embeds`." |
|
) |
|
decoder_input_ids = self._shift_right(input_ids) |
|
|
|
outputs = self.transformer( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
decoder_input_ids=decoder_input_ids, |
|
decoder_attention_mask=decoder_attention_mask, |
|
head_mask=head_mask, |
|
decoder_head_mask=decoder_head_mask, |
|
cross_attn_head_mask=cross_attn_head_mask, |
|
encoder_outputs=encoder_outputs, |
|
inputs_embeds=inputs_embeds, |
|
decoder_inputs_embeds=decoder_inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
sequence_output = outputs[0] |
|
|
|
eos_mask = input_ids.eq(self.config.eos_token_id).to(sequence_output.device) |
|
|
|
if len(torch.unique_consecutive(eos_mask.sum(1))) > 1: |
|
raise ValueError("All examples must have the same number of <eos> tokens.") |
|
batch_size, _, hidden_size = sequence_output.shape |
|
sentence_representation = sequence_output[eos_mask, :].view(batch_size, -1, hidden_size)[:, -1, :] |
|
logits = self.classification_head(sentence_representation) |
|
|
|
loss = None |
|
if labels is not None: |
|
labels = labels.to(logits.device) |
|
if self.config.problem_type is None: |
|
if self.config.num_labels == 1: |
|
self.config.problem_type = "regression" |
|
elif self.config.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): |
|
self.config.problem_type = "single_label_classification" |
|
else: |
|
self.config.problem_type = "multi_label_classification" |
|
|
|
if self.config.problem_type == "regression": |
|
loss_fct = MSELoss() |
|
if self.config.num_labels == 1: |
|
loss = loss_fct(logits.squeeze(), labels.squeeze()) |
|
else: |
|
loss = loss_fct(logits, labels) |
|
elif self.config.problem_type == "single_label_classification": |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1)) |
|
elif self.config.problem_type == "multi_label_classification": |
|
loss_fct = BCEWithLogitsLoss() |
|
loss = loss_fct(logits, labels) |
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return Seq2SeqSequenceClassifierOutput( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
decoder_hidden_states=outputs.decoder_hidden_states, |
|
decoder_attentions=outputs.decoder_attentions, |
|
cross_attentions=outputs.cross_attentions, |
|
encoder_last_hidden_state=outputs.encoder_last_hidden_state, |
|
encoder_hidden_states=outputs.encoder_hidden_states, |
|
encoder_attentions=outputs.encoder_attentions, |
|
) |
|
|
|
try: |
|
AutoModelForSequenceClassification.register(T5Config, T5ForSequenceClassification) |
|
except ValueError: |
|
pass |
|
|
|
|