--- language: - multilingual tags: - code - sentence embedding license: mit datasets: - CodeSearchNet pipeline_tag: feature-extraction --- # Model Card for CodeCSE A simple pre-trained model for code and comment sentence embeddings using contrastive learning. This model was pretrained using [CodeSearchNet](https://huggingface.co./datasets/code_search_net). Please [**clone the CodeCSE repository**](https://github.com/emu-se/CodeCSE) to get `GraphCodeBERTForCL` and other dependencies to use this pretrained model. https://github.com/emu-se/CodeCSE Detailed instructions are listed in the repository's README.md. Overall, you will need: 1. GraphCodeBERT (CodeCSE uses GraphCodeBERT's input format for code) 2. GraphCodeBERTForCL defined in [codecse/codecse](https://github.com/emu-se/CodeCSE/tree/main/codecse/codecse) ## Inference example NL input example: example_nl.json ```json { "original_string": "", "docstring_tokens": ["Save", "model", "to", "a", "pickle", "located", "at", "path"], "url": "https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/deepq/deepq.py#L55-L72" } ``` Code snippet to get the embedding of an NL document ([link to complete code](https://github.com/emu-se/CodeCSE/blob/a04a025c7048204bdfd908fe259fafc55e2df169/inference.py#L105)): ``` nl_json = load_example("example_nl.json") batch = prepare_inputs(nl_json, tokenizer, args) nl_inputs = batch[3] with torch.no_grad(): nl_vec = model(input_ids=nl_inputs, sent_emb="nl")[1] ```