--- license: apache-2.0 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.84 --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co./ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.9253 - Accuracy: 0.84 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.3972 | 1.0 | 450 | 1.4662 | 0.65 | | 0.7118 | 2.0 | 900 | 0.9103 | 0.69 | | 0.4653 | 3.0 | 1350 | 0.8097 | 0.73 | | 0.934 | 4.0 | 1800 | 0.7674 | 0.83 | | 0.3231 | 5.0 | 2250 | 1.2025 | 0.73 | | 0.0038 | 6.0 | 2700 | 1.1013 | 0.8 | | 0.002 | 7.0 | 3150 | 0.8540 | 0.86 | | 0.0022 | 8.0 | 3600 | 0.8067 | 0.85 | | 0.0013 | 9.0 | 4050 | 0.8682 | 0.86 | | 0.0016 | 10.0 | 4500 | 0.9253 | 0.84 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.13.0 - Tokenizers 0.13.3