sjainlucky commited on
Commit
e97c113
1 Parent(s): d2fd464

Training LunarLander-v2 with PPO

Browse files
Lunar_Model.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e854154d18e062b504af566dc2e4af7c0fb94395fa2f89251fafed0ba564ed15
3
+ size 147416
Lunar_Model/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
Lunar_Model/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7c5c73ef70>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7c5c745040>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7c5c7450d0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7c5c745160>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f7c5c7451f0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f7c5c745280>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f7c5c745310>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7c5c7453a0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f7c5c745430>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7c5c7454c0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7c5c745550>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7c5c7455e0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f7c5c7403c0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1677061969001602842,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHP2kD2ujY+6tWKXO6IlDDaW3ss6k4evugAAgD8AAIA/miigPQSJeT+FBUY9dS6CvoDcBT3eXFC9AAAAAAAAAADN7MC66IDJvNzCGD0U7ja9uCihvXbNvr0AAIA/AACAPzOZnb1Lwq4/PyEkvzpMor6r9r68HTyJvgAAAAAAAAAAQDNuvmvZ8j1O25Y+L82Ivo5QOz2/E5y9AAAAAAAAAACALaS9rjWEumcxtLs3oPy4KWTSOQBiYzgAAIA/AACAPwCWNTy9TXY88LYcvZEeNb77uyO9K6CrvAAAAAAAAAAAAMzTvEiXhrqqFpu5flAWtYeGgDoajrE4AACAPwAAgD8zOUu9KRgOugEfoLtNmro1qwtSu0nuujoAAIA/AACAPzPmK77wgag+sqWKPlUPcb5HPvs82TwYPQAAAAAAAAAAZs69O+Gojbr0HLe50nk2NkVVkDpK49M4AACAPwAAgD9AkSS+7oKEvO56V7tOuqG5vH7qPX3KkjoAAIA/AACAPwCd6zxIU5G6etVgt/wlw7HRXLC6x3+BNgAAgD8AAIA/mjIIPXvSoLo1i8s6HrexNf0dsLoLM+q5AACAPwAAgD+a2Kw8KbhnukrFQzrgfAA1SNolOgPQZLkAAIA/AACAP7OSFj17FqK6oPlau5PkcTcfXx06JDfCtgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVexAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIYvcdw2O6YkCUhpRSlIwBbJRN6AOMAXSUR0CR02dxAB1cdX2UKGgGaAloD0MIEas/wjAPZkCUhpRSlGgVTegDaBZHQJHX+t5le4V1fZQoaAZoCWgPQwiNYU7QpqNjQJSGlFKUaBVN6ANoFkdAkdz2wiaAnXV9lChoBmgJaA9DCM2VQbXBm2BAlIaUUpRoFU3oA2gWR0CR6d5FgDzRdX2UKGgGaAloD0MIER5tHDHBY0CUhpRSlGgVTegDaBZHQJHrWNGViWp1fZQoaAZoCWgPQwiLh/cc2D5nQJSGlFKUaBVN6ANoFkdAkevgL3K0U3V9lChoBmgJaA9DCA9j0t/LUGZAlIaUUpRoFU3oA2gWR0CR7KLR8c+8dX2UKGgGaAloD0MItI6qJghKZ0CUhpRSlGgVTegDaBZHQJHssSGrS3N1fZQoaAZoCWgPQwgEPGnhMvFjQJSGlFKUaBVN6ANoFkdAkfBQmeDnNnV9lChoBmgJaA9DCNfBwd5EbmJAlIaUUpRoFU3oA2gWR0CR8Ygflp49dX2UKGgGaAloD0MInpj1YqjgYkCUhpRSlGgVTegDaBZHQJHzktFrl/91fZQoaAZoCWgPQwhD5V/Lq25gQJSGlFKUaBVN6ANoFkdAkg8PuXu3MXV9lChoBmgJaA9DCLX8wFWeK2VAlIaUUpRoFU3oA2gWR0CSFMqy4Wk8dX2UKGgGaAloD0MI4CpPIOzPYUCUhpRSlGgVTegDaBZHQJIcR+w1R+B1fZQoaAZoCWgPQwj7r3PTZoJfQJSGlFKUaBVN6ANoFkdAkim02UB4lnV9lChoBmgJaA9DCDfGTngJhWNAlIaUUpRoFU3oA2gWR0CSK51EVnEmdX2UKGgGaAloD0MI8tHijGEUXkCUhpRSlGgVTegDaBZHQJIr29ytFKF1fZQoaAZoCWgPQwhioGtfQDNjQJSGlFKUaBVN6ANoFkdAkjA9K28Zk3V9lChoBmgJaA9DCDcz+tFwD2JAlIaUUpRoFU3oA2gWR0CSM+Wd3B55dX2UKGgGaAloD0MIgV64c2EyTUCUhpRSlGgVS/9oFkdAkjjgi/wiJXV9lChoBmgJaA9DCCBgrdo14GJAlIaUUpRoFU3oA2gWR0CSPS9XLeQ/dX2UKGgGaAloD0MI42w6ArgMYkCUhpRSlGgVTegDaBZHQJI+jvYvnKZ1fZQoaAZoCWgPQwg9Kv7vCLVhQJSGlFKUaBVN6ANoFkdAkj8INNJvpHV9lChoBmgJaA9DCG9jsyPVvGBAlIaUUpRoFU3oA2gWR0CSP7x+8XendX2UKGgGaAloD0MI1A/qIgUYYECUhpRSlGgVTegDaBZHQJI/yq1gH/t1fZQoaAZoCWgPQwi7mGa619FeQJSGlFKUaBVN6ANoFkdAkkMv0RODa3V9lChoBmgJaA9DCJdzKa6qcmNAlIaUUpRoFU3oA2gWR0CSREe+Eh7mdX2UKGgGaAloD0MIsr6ByQ3rYkCUhpRSlGgVTegDaBZHQJJGGmQ8wHt1fZQoaAZoCWgPQwg3iUFgZRNiQJSGlFKUaBVN6ANoFkdAkmXEt29tdnV9lChoBmgJaA9DCHjwEwfQDmhAlIaUUpRoFU3oA2gWR0CSah5FgDzRdX2UKGgGaAloD0MIbmk1JO73YUCUhpRSlGgVTegDaBZHQJJuvfuTibV1fZQoaAZoCWgPQwg4a/C+KkNkQJSGlFKUaBVN6ANoFkdAknpGK/EfknV9lChoBmgJaA9DCIodjUN9AWZAlIaUUpRoFU3oA2gWR0CSeoCEpRXPdX2UKGgGaAloD0MIlkOLbGfEZkCUhpRSlGgVTegDaBZHQJJ+rMKTjed1fZQoaAZoCWgPQwi1h71QwJJjQJSGlFKUaBVN6ANoFkdAkoIip3os7XV9lChoBmgJaA9DCNMTlnhAl0RAlIaUUpRoFUu3aBZHQJKEdCojv/l1fZQoaAZoCWgPQwj9SXzuhBtjQJSGlFKUaBVN6ANoFkdAkoekBsANonV9lChoBmgJaA9DCBTnqKNjSmBAlIaUUpRoFU3oA2gWR0CSjSh1klNUdX2UKGgGaAloD0MI0Qg2rn/bXUCUhpRSlGgVTegDaBZHQJKPGrELpiZ1fZQoaAZoCWgPQwjKNJpcjN01QJSGlFKUaBVL/mgWR0CSj2lImPYGdX2UKGgGaAloD0MIIQIOocqNZUCUhpRSlGgVTegDaBZHQJKPxR2r4nF1fZQoaAZoCWgPQwg6Pe/GAk9nQJSGlFKUaBVN6ANoFkdAkpDKlchTwXV9lChoBmgJaA9DCK0VbY5zhWNAlIaUUpRoFU3oA2gWR0CSkN+i8FpxdX2UKGgGaAloD0MIy/j3GRejZkCUhpRSlGgVTegDaBZHQJKVXPOY6XB1fZQoaAZoCWgPQwhrt11oLhpkQJSGlFKUaBVN6ANoFkdAkpbNNrTH83V9lChoBmgJaA9DCHwPlxx3/GBAlIaUUpRoFU3oA2gWR0CSmSeVs1sMdX2UKGgGaAloD0MITRJLyt09TECUhpRSlGgVS+VoFkdAkp0qWX1J2HV9lChoBmgJaA9DCFDgnXx6ckZAlIaUUpRoFU0QAWgWR0CSnpkmhM8HdX2UKGgGaAloD0MI7DTSUvnaYkCUhpRSlGgVTegDaBZHQJKgI5/9YOl1fZQoaAZoCWgPQwhjgEQTKERlQJSGlFKUaBVN6ANoFkdAkrbvATIvJ3V9lChoBmgJaA9DCEkvaverNmRAlIaUUpRoFU3oA2gWR0CSu4dTHbRGdX2UKGgGaAloD0MIc0f/yzWNY0CUhpRSlGgVTegDaBZHQJLKrN8ma6V1fZQoaAZoCWgPQwi7Cb5pevRmQJSGlFKUaBVN6ANoFkdAktZ+01IiDHV9lChoBmgJaA9DCAVTzawlD2JAlIaUUpRoFU3oA2gWR0CS2WgRK6FudX2UKGgGaAloD0MIar+1EyVTYECUhpRSlGgVTegDaBZHQJLcN4s3AEd1fZQoaAZoCWgPQwiH+fIC7HxiQJSGlFKUaBVN6ANoFkdAkuDcewLVnXV9lChoBmgJaA9DCCNMUS4NJGVAlIaUUpRoFU3oA2gWR0CS4nPY4ACGdX2UKGgGaAloD0MIVaGBWLaiY0CUhpRSlGgVTegDaBZHQJLis8JUo8Z1fZQoaAZoCWgPQwhaL4Zyoi5kQJSGlFKUaBVN6ANoFkdAkuPbb5/LDHV9lChoBmgJaA9DCJkuxOoPYWBAlIaUUpRoFU3oA2gWR0CS592vB7/odX2UKGgGaAloD0MIy7p/LMRDYECUhpRSlGgVTegDaBZHQJLpMEt/WlN1fZQoaAZoCWgPQwhupkI8kv1lQJSGlFKUaBVN6ANoFkdAkuuDWf9P13V9lChoBmgJaA9DCMjsLHqnslxAlIaUUpRoFU3oA2gWR0CS8Do11nuidX2UKGgGaAloD0MIf6Zet4isYUCUhpRSlGgVTegDaBZHQJLxyxnnMdN1fZQoaAZoCWgPQwiatKm6x3FkQJSGlFKUaBVN6ANoFkdAkvNq1XvH93V9lChoBmgJaA9DCNpWs874GmBAlIaUUpRoFU3oA2gWR0CTEB+QU5+6dX2UKGgGaAloD0MIVS5U/rXtYkCUhpRSlGgVTegDaBZHQJMVKsxO+Ix1fZQoaAZoCWgPQwi2os1x7sZiQJSGlFKUaBVN6ANoFkdAkyFoPf8/EHV9lChoBmgJaA9DCPyMCwdC73JAlIaUUpRoFU3kAWgWR0CTJvo6S1VpdX2UKGgGaAloD0MI71aW6CzeZUCUhpRSlGgVTegDaBZHQJMp81gpjMF1fZQoaAZoCWgPQwhDIJc4cnlmQJSGlFKUaBVN6ANoFkdAkyxqCcwxnHV9lChoBmgJaA9DCGgibHj6kWNAlIaUUpRoFU3oA2gWR0CTLrZML4N7dX2UKGgGaAloD0MIDAbX3FF9ZECUhpRSlGgVTegDaBZHQJMy2E+Pikx1fZQoaAZoCWgPQwidRloqbw1eQJSGlFKUaBVN6ANoFkdAkzQ+qBEroXV9lChoBmgJaA9DCBCWsaGbL2ZAlIaUUpRoFU3oA2gWR0CTNHXF98Z2dX2UKGgGaAloD0MIlBEXgMaXZkCUhpRSlGgVTegDaBZHQJM1wC7sfJV1fZQoaAZoCWgPQwgz4Zf6ealjQJSGlFKUaBVN6ANoFkdAkzq/GEPDpHV9lChoBmgJaA9DCDZbecl/wmVAlIaUUpRoFU3oA2gWR0CTPEy3CsOodX2UKGgGaAloD0MIQiPYuP7nY0CUhpRSlGgVTegDaBZHQJM/KUkfLcN1fZQoaAZoCWgPQwgJFoczP3tjQJSGlFKUaBVN6ANoFkdAk0UklAu7H3V9lChoBmgJaA9DCAoRcAjVn2VAlIaUUpRoFU3oA2gWR0CTSOi7kGRndX2UKGgGaAloD0MIRzmYTQBJZUCUhpRSlGgVTegDaBZHQJNgKKAJ9iN1fZQoaAZoCWgPQwhj7ISXYAxlQJSGlFKUaBVN6ANoFkdAk2TXc1wYL3V9lChoBmgJaA9DCPm7d9QYAGNAlIaUUpRoFU3oA2gWR0CTcD+HrQgLdX2UKGgGaAloD0MIejiB6TTZYECUhpRSlGgVTegDaBZHQJN22ryUcGV1fZQoaAZoCWgPQwgeb/Jb9F9iQJSGlFKUaBVN6ANoFkdAk3p17IDHO3V9lChoBmgJaA9DCB/WG7XCZmFAlIaUUpRoFU3oA2gWR0CTfbQVbiZOdX2UKGgGaAloD0MINj/+0qKyYkCUhpRSlGgVTegDaBZHQJOA36LwWnF1fZQoaAZoCWgPQwhBnl2+9VkgQJSGlFKUaBVL+mgWR0CTgpXlKbrkdX2UKGgGaAloD0MIqTKMu0F9Y0CUhpRSlGgVTegDaBZHQJOE1TXJ5mh1fZQoaAZoCWgPQwiGG/D5YXBfQJSGlFKUaBVN6ANoFkdAk4YM274BWHV9lChoBmgJaA9DCIarAyDuS2NAlIaUUpRoFU3oA2gWR0CThkYeDFqBdX2UKGgGaAloD0MIWJBmLJrnY0CUhpRSlGgVTegDaBZHQJOHKFpPAO91fZQoaAZoCWgPQwhZvi7Df1FmQJSGlFKUaBVN6ANoFkdAk4oq6BiCrnV9lChoBmgJaA9DCPSJPEm6eWNAlIaUUpRoFU3oA2gWR0CTiy6+nIhhdX2UKGgGaAloD0MIqHLaU/L1YkCUhpRSlGgVTegDaBZHQJOM8lF+d9V1fZQoaAZoCWgPQwjxtz1BYr5TQJSGlFKUaBVL52gWR0CTkClcQiA2dX2UKGgGaAloD0MIPwEUI0sBXECUhpRSlGgVTegDaBZHQJORC55JK8N1fZQoaAZoCWgPQwgEHEKVGv9kQJSGlFKUaBVN6ANoFkdAk5QTqW1MNHV9lChoBmgJaA9DCAte9BWkdWZAlIaUUpRoFU3oA2gWR0CTmBPgvUSadWUu"
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 248,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
Lunar_Model/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6972f0d493a8bdd5612ac20a11566757d9d9c24a96b3551fd57e21140aaea51d
3
+ size 87929
Lunar_Model/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fb986d852b22353d2e9aabcfb0ae8c29560f92508618427430842ea5c52b344c
3
+ size 43393
Lunar_Model/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
Lunar_Model/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 256.05 +/- 15.60
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7c5c73ef70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7c5c745040>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7c5c7450d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7c5c745160>", "_build": "<function ActorCriticPolicy._build at 0x7f7c5c7451f0>", "forward": "<function ActorCriticPolicy.forward at 0x7f7c5c745280>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f7c5c745310>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7c5c7453a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f7c5c745430>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7c5c7454c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7c5c745550>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7c5c7455e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f7c5c7403c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677061969001602842, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHP2kD2ujY+6tWKXO6IlDDaW3ss6k4evugAAgD8AAIA/miigPQSJeT+FBUY9dS6CvoDcBT3eXFC9AAAAAAAAAADN7MC66IDJvNzCGD0U7ja9uCihvXbNvr0AAIA/AACAPzOZnb1Lwq4/PyEkvzpMor6r9r68HTyJvgAAAAAAAAAAQDNuvmvZ8j1O25Y+L82Ivo5QOz2/E5y9AAAAAAAAAACALaS9rjWEumcxtLs3oPy4KWTSOQBiYzgAAIA/AACAPwCWNTy9TXY88LYcvZEeNb77uyO9K6CrvAAAAAAAAAAAAMzTvEiXhrqqFpu5flAWtYeGgDoajrE4AACAPwAAgD8zOUu9KRgOugEfoLtNmro1qwtSu0nuujoAAIA/AACAPzPmK77wgag+sqWKPlUPcb5HPvs82TwYPQAAAAAAAAAAZs69O+Gojbr0HLe50nk2NkVVkDpK49M4AACAPwAAgD9AkSS+7oKEvO56V7tOuqG5vH7qPX3KkjoAAIA/AACAPwCd6zxIU5G6etVgt/wlw7HRXLC6x3+BNgAAgD8AAIA/mjIIPXvSoLo1i8s6HrexNf0dsLoLM+q5AACAPwAAgD+a2Kw8KbhnukrFQzrgfAA1SNolOgPQZLkAAIA/AACAP7OSFj17FqK6oPlau5PkcTcfXx06JDfCtgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVexAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIYvcdw2O6YkCUhpRSlIwBbJRN6AOMAXSUR0CR02dxAB1cdX2UKGgGaAloD0MIEas/wjAPZkCUhpRSlGgVTegDaBZHQJHX+t5le4V1fZQoaAZoCWgPQwiNYU7QpqNjQJSGlFKUaBVN6ANoFkdAkdz2wiaAnXV9lChoBmgJaA9DCM2VQbXBm2BAlIaUUpRoFU3oA2gWR0CR6d5FgDzRdX2UKGgGaAloD0MIER5tHDHBY0CUhpRSlGgVTegDaBZHQJHrWNGViWp1fZQoaAZoCWgPQwiLh/cc2D5nQJSGlFKUaBVN6ANoFkdAkevgL3K0U3V9lChoBmgJaA9DCA9j0t/LUGZAlIaUUpRoFU3oA2gWR0CR7KLR8c+8dX2UKGgGaAloD0MItI6qJghKZ0CUhpRSlGgVTegDaBZHQJHssSGrS3N1fZQoaAZoCWgPQwgEPGnhMvFjQJSGlFKUaBVN6ANoFkdAkfBQmeDnNnV9lChoBmgJaA9DCNfBwd5EbmJAlIaUUpRoFU3oA2gWR0CR8Ygflp49dX2UKGgGaAloD0MInpj1YqjgYkCUhpRSlGgVTegDaBZHQJHzktFrl/91fZQoaAZoCWgPQwhD5V/Lq25gQJSGlFKUaBVN6ANoFkdAkg8PuXu3MXV9lChoBmgJaA9DCLX8wFWeK2VAlIaUUpRoFU3oA2gWR0CSFMqy4Wk8dX2UKGgGaAloD0MI4CpPIOzPYUCUhpRSlGgVTegDaBZHQJIcR+w1R+B1fZQoaAZoCWgPQwj7r3PTZoJfQJSGlFKUaBVN6ANoFkdAkim02UB4lnV9lChoBmgJaA9DCDfGTngJhWNAlIaUUpRoFU3oA2gWR0CSK51EVnEmdX2UKGgGaAloD0MI8tHijGEUXkCUhpRSlGgVTegDaBZHQJIr29ytFKF1fZQoaAZoCWgPQwhioGtfQDNjQJSGlFKUaBVN6ANoFkdAkjA9K28Zk3V9lChoBmgJaA9DCDcz+tFwD2JAlIaUUpRoFU3oA2gWR0CSM+Wd3B55dX2UKGgGaAloD0MIgV64c2EyTUCUhpRSlGgVS/9oFkdAkjjgi/wiJXV9lChoBmgJaA9DCCBgrdo14GJAlIaUUpRoFU3oA2gWR0CSPS9XLeQ/dX2UKGgGaAloD0MI42w6ArgMYkCUhpRSlGgVTegDaBZHQJI+jvYvnKZ1fZQoaAZoCWgPQwg9Kv7vCLVhQJSGlFKUaBVN6ANoFkdAkj8INNJvpHV9lChoBmgJaA9DCG9jsyPVvGBAlIaUUpRoFU3oA2gWR0CSP7x+8XendX2UKGgGaAloD0MI1A/qIgUYYECUhpRSlGgVTegDaBZHQJI/yq1gH/t1fZQoaAZoCWgPQwi7mGa619FeQJSGlFKUaBVN6ANoFkdAkkMv0RODa3V9lChoBmgJaA9DCJdzKa6qcmNAlIaUUpRoFU3oA2gWR0CSREe+Eh7mdX2UKGgGaAloD0MIsr6ByQ3rYkCUhpRSlGgVTegDaBZHQJJGGmQ8wHt1fZQoaAZoCWgPQwg3iUFgZRNiQJSGlFKUaBVN6ANoFkdAkmXEt29tdnV9lChoBmgJaA9DCHjwEwfQDmhAlIaUUpRoFU3oA2gWR0CSah5FgDzRdX2UKGgGaAloD0MIbmk1JO73YUCUhpRSlGgVTegDaBZHQJJuvfuTibV1fZQoaAZoCWgPQwg4a/C+KkNkQJSGlFKUaBVN6ANoFkdAknpGK/EfknV9lChoBmgJaA9DCIodjUN9AWZAlIaUUpRoFU3oA2gWR0CSeoCEpRXPdX2UKGgGaAloD0MIlkOLbGfEZkCUhpRSlGgVTegDaBZHQJJ+rMKTjed1fZQoaAZoCWgPQwi1h71QwJJjQJSGlFKUaBVN6ANoFkdAkoIip3os7XV9lChoBmgJaA9DCNMTlnhAl0RAlIaUUpRoFUu3aBZHQJKEdCojv/l1fZQoaAZoCWgPQwj9SXzuhBtjQJSGlFKUaBVN6ANoFkdAkoekBsANonV9lChoBmgJaA9DCBTnqKNjSmBAlIaUUpRoFU3oA2gWR0CSjSh1klNUdX2UKGgGaAloD0MI0Qg2rn/bXUCUhpRSlGgVTegDaBZHQJKPGrELpiZ1fZQoaAZoCWgPQwjKNJpcjN01QJSGlFKUaBVL/mgWR0CSj2lImPYGdX2UKGgGaAloD0MIIQIOocqNZUCUhpRSlGgVTegDaBZHQJKPxR2r4nF1fZQoaAZoCWgPQwg6Pe/GAk9nQJSGlFKUaBVN6ANoFkdAkpDKlchTwXV9lChoBmgJaA9DCK0VbY5zhWNAlIaUUpRoFU3oA2gWR0CSkN+i8FpxdX2UKGgGaAloD0MIy/j3GRejZkCUhpRSlGgVTegDaBZHQJKVXPOY6XB1fZQoaAZoCWgPQwhrt11oLhpkQJSGlFKUaBVN6ANoFkdAkpbNNrTH83V9lChoBmgJaA9DCHwPlxx3/GBAlIaUUpRoFU3oA2gWR0CSmSeVs1sMdX2UKGgGaAloD0MITRJLyt09TECUhpRSlGgVS+VoFkdAkp0qWX1J2HV9lChoBmgJaA9DCFDgnXx6ckZAlIaUUpRoFU0QAWgWR0CSnpkmhM8HdX2UKGgGaAloD0MI7DTSUvnaYkCUhpRSlGgVTegDaBZHQJKgI5/9YOl1fZQoaAZoCWgPQwhjgEQTKERlQJSGlFKUaBVN6ANoFkdAkrbvATIvJ3V9lChoBmgJaA9DCEkvaverNmRAlIaUUpRoFU3oA2gWR0CSu4dTHbRGdX2UKGgGaAloD0MIc0f/yzWNY0CUhpRSlGgVTegDaBZHQJLKrN8ma6V1fZQoaAZoCWgPQwi7Cb5pevRmQJSGlFKUaBVN6ANoFkdAktZ+01IiDHV9lChoBmgJaA9DCAVTzawlD2JAlIaUUpRoFU3oA2gWR0CS2WgRK6FudX2UKGgGaAloD0MIar+1EyVTYECUhpRSlGgVTegDaBZHQJLcN4s3AEd1fZQoaAZoCWgPQwiH+fIC7HxiQJSGlFKUaBVN6ANoFkdAkuDcewLVnXV9lChoBmgJaA9DCCNMUS4NJGVAlIaUUpRoFU3oA2gWR0CS4nPY4ACGdX2UKGgGaAloD0MIVaGBWLaiY0CUhpRSlGgVTegDaBZHQJLis8JUo8Z1fZQoaAZoCWgPQwhaL4Zyoi5kQJSGlFKUaBVN6ANoFkdAkuPbb5/LDHV9lChoBmgJaA9DCJkuxOoPYWBAlIaUUpRoFU3oA2gWR0CS592vB7/odX2UKGgGaAloD0MIy7p/LMRDYECUhpRSlGgVTegDaBZHQJLpMEt/WlN1fZQoaAZoCWgPQwhupkI8kv1lQJSGlFKUaBVN6ANoFkdAkuuDWf9P13V9lChoBmgJaA9DCMjsLHqnslxAlIaUUpRoFU3oA2gWR0CS8Do11nuidX2UKGgGaAloD0MIf6Zet4isYUCUhpRSlGgVTegDaBZHQJLxyxnnMdN1fZQoaAZoCWgPQwiatKm6x3FkQJSGlFKUaBVN6ANoFkdAkvNq1XvH93V9lChoBmgJaA9DCNpWs874GmBAlIaUUpRoFU3oA2gWR0CTEB+QU5+6dX2UKGgGaAloD0MIVS5U/rXtYkCUhpRSlGgVTegDaBZHQJMVKsxO+Ix1fZQoaAZoCWgPQwi2os1x7sZiQJSGlFKUaBVN6ANoFkdAkyFoPf8/EHV9lChoBmgJaA9DCPyMCwdC73JAlIaUUpRoFU3kAWgWR0CTJvo6S1VpdX2UKGgGaAloD0MI71aW6CzeZUCUhpRSlGgVTegDaBZHQJMp81gpjMF1fZQoaAZoCWgPQwhDIJc4cnlmQJSGlFKUaBVN6ANoFkdAkyxqCcwxnHV9lChoBmgJaA9DCGgibHj6kWNAlIaUUpRoFU3oA2gWR0CTLrZML4N7dX2UKGgGaAloD0MIDAbX3FF9ZECUhpRSlGgVTegDaBZHQJMy2E+Pikx1fZQoaAZoCWgPQwidRloqbw1eQJSGlFKUaBVN6ANoFkdAkzQ+qBEroXV9lChoBmgJaA9DCBCWsaGbL2ZAlIaUUpRoFU3oA2gWR0CTNHXF98Z2dX2UKGgGaAloD0MIlBEXgMaXZkCUhpRSlGgVTegDaBZHQJM1wC7sfJV1fZQoaAZoCWgPQwgz4Zf6ealjQJSGlFKUaBVN6ANoFkdAkzq/GEPDpHV9lChoBmgJaA9DCDZbecl/wmVAlIaUUpRoFU3oA2gWR0CTPEy3CsOodX2UKGgGaAloD0MIQiPYuP7nY0CUhpRSlGgVTegDaBZHQJM/KUkfLcN1fZQoaAZoCWgPQwgJFoczP3tjQJSGlFKUaBVN6ANoFkdAk0UklAu7H3V9lChoBmgJaA9DCAoRcAjVn2VAlIaUUpRoFU3oA2gWR0CTSOi7kGRndX2UKGgGaAloD0MIRzmYTQBJZUCUhpRSlGgVTegDaBZHQJNgKKAJ9iN1fZQoaAZoCWgPQwhj7ISXYAxlQJSGlFKUaBVN6ANoFkdAk2TXc1wYL3V9lChoBmgJaA9DCPm7d9QYAGNAlIaUUpRoFU3oA2gWR0CTcD+HrQgLdX2UKGgGaAloD0MIejiB6TTZYECUhpRSlGgVTegDaBZHQJN22ryUcGV1fZQoaAZoCWgPQwgeb/Jb9F9iQJSGlFKUaBVN6ANoFkdAk3p17IDHO3V9lChoBmgJaA9DCB/WG7XCZmFAlIaUUpRoFU3oA2gWR0CTfbQVbiZOdX2UKGgGaAloD0MINj/+0qKyYkCUhpRSlGgVTegDaBZHQJOA36LwWnF1fZQoaAZoCWgPQwhBnl2+9VkgQJSGlFKUaBVL+mgWR0CTgpXlKbrkdX2UKGgGaAloD0MIqTKMu0F9Y0CUhpRSlGgVTegDaBZHQJOE1TXJ5mh1fZQoaAZoCWgPQwiGG/D5YXBfQJSGlFKUaBVN6ANoFkdAk4YM274BWHV9lChoBmgJaA9DCIarAyDuS2NAlIaUUpRoFU3oA2gWR0CThkYeDFqBdX2UKGgGaAloD0MIWJBmLJrnY0CUhpRSlGgVTegDaBZHQJOHKFpPAO91fZQoaAZoCWgPQwhZvi7Df1FmQJSGlFKUaBVN6ANoFkdAk4oq6BiCrnV9lChoBmgJaA9DCPSJPEm6eWNAlIaUUpRoFU3oA2gWR0CTiy6+nIhhdX2UKGgGaAloD0MIqHLaU/L1YkCUhpRSlGgVTegDaBZHQJOM8lF+d9V1fZQoaAZoCWgPQwjxtz1BYr5TQJSGlFKUaBVL52gWR0CTkClcQiA2dX2UKGgGaAloD0MIPwEUI0sBXECUhpRSlGgVTegDaBZHQJORC55JK8N1fZQoaAZoCWgPQwgEHEKVGv9kQJSGlFKUaBVN6ANoFkdAk5QTqW1MNHV9lChoBmgJaA9DCAte9BWkdWZAlIaUUpRoFU3oA2gWR0CTmBPgvUSadWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (258 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 256.0464228324675, "std_reward": 15.595381188941813, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-22T11:00:30.195308"}