--- library_name: peft license: other base_model: unsloth/Llama-3.2-3B-Instruct tags: - llama-factory - lora - unsloth - generated_from_trainer model-index: - name: llm3br256 results: [] --- # llm3br256 This model is a fine-tuned version of [meta-llama/Llama-3.2-3B-Instruct](https://huggingface.co./meta-llama/Llama-3.2-3B-Instruct) on the akash_unifo_757 dataset. It achieves the following results on the evaluation set: - Loss: 0.0032 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 25.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0133 | 0.0808 | 25 | 0.0123 | | 0.0056 | 0.1616 | 50 | 0.0098 | | 0.0113 | 0.2424 | 75 | 0.0084 | | 0.0083 | 0.3232 | 100 | 0.0074 | | 0.0086 | 0.4040 | 125 | 0.0065 | | 0.0067 | 0.4848 | 150 | 0.0060 | | 0.0038 | 0.5657 | 175 | 0.0058 | | 0.0043 | 0.6465 | 200 | 0.0054 | | 0.004 | 0.7273 | 225 | 0.0053 | | 0.0095 | 0.8081 | 250 | 0.0050 | | 0.0071 | 0.8889 | 275 | 0.0050 | | 0.0056 | 0.9697 | 300 | 0.0047 | | 0.0017 | 1.0505 | 325 | 0.0048 | | 0.0024 | 1.1313 | 350 | 0.0046 | | 0.0023 | 1.2121 | 375 | 0.0046 | | 0.003 | 1.2929 | 400 | 0.0043 | | 0.005 | 1.3737 | 425 | 0.0044 | | 0.0039 | 1.4545 | 450 | 0.0040 | | 0.0045 | 1.5354 | 475 | 0.0041 | | 0.0032 | 1.6162 | 500 | 0.0042 | | 0.0021 | 1.6970 | 525 | 0.0039 | | 0.0028 | 1.7778 | 550 | 0.0038 | | 0.0072 | 1.8586 | 575 | 0.0037 | | 0.0091 | 1.9394 | 600 | 0.0041 | | 0.0021 | 2.0202 | 625 | 0.0039 | | 0.0026 | 2.1010 | 650 | 0.0040 | | 0.0028 | 2.1818 | 675 | 0.0038 | | 0.0027 | 2.2626 | 700 | 0.0038 | | 0.0032 | 2.3434 | 725 | 0.0038 | | 0.0022 | 2.4242 | 750 | 0.0038 | | 0.0024 | 2.5051 | 775 | 0.0036 | | 0.0015 | 2.5859 | 800 | 0.0034 | | 0.0022 | 2.6667 | 825 | 0.0036 | | 0.0045 | 2.7475 | 850 | 0.0034 | | 0.004 | 2.8283 | 875 | 0.0035 | | 0.0026 | 2.9091 | 900 | 0.0034 | | 0.0019 | 2.9899 | 925 | 0.0033 | | 0.0015 | 3.0707 | 950 | 0.0036 | | 0.0018 | 3.1515 | 975 | 0.0034 | | 0.0013 | 3.2323 | 1000 | 0.0036 | | 0.0019 | 3.3131 | 1025 | 0.0034 | | 0.0012 | 3.3939 | 1050 | 0.0033 | | 0.0018 | 3.4747 | 1075 | 0.0034 | | 0.0015 | 3.5556 | 1100 | 0.0034 | | 0.0012 | 3.6364 | 1125 | 0.0034 | | 0.0018 | 3.7172 | 1150 | 0.0032 | | 0.002 | 3.7980 | 1175 | 0.0032 | | 0.002 | 3.8788 | 1200 | 0.0032 | | 0.0017 | 3.9596 | 1225 | 0.0032 | | 0.0009 | 4.0404 | 1250 | 0.0033 | | 0.0013 | 4.1212 | 1275 | 0.0033 | | 0.0023 | 4.2020 | 1300 | 0.0033 | | 0.0026 | 4.2828 | 1325 | 0.0031 | | 0.0016 | 4.3636 | 1350 | 0.0031 | | 0.0023 | 4.4444 | 1375 | 0.0031 | | 0.0015 | 4.5253 | 1400 | 0.0033 | | 0.0011 | 4.6061 | 1425 | 0.0031 | | 0.0016 | 4.6869 | 1450 | 0.0032 | | 0.0011 | 4.7677 | 1475 | 0.0033 | | 0.0007 | 4.8485 | 1500 | 0.0032 | | 0.0014 | 4.9293 | 1525 | 0.0033 | | 0.0009 | 5.0101 | 1550 | 0.0033 | ### Framework versions - PEFT 0.12.0 - Transformers 4.46.1 - Pytorch 2.4.0+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3